4.如圖是一個(gè)空間幾何體的三視圖,則該空間幾何體的表面積是( 。
A.$({8+2\sqrt{5}})π$B.$({9+2\sqrt{5}})π$C.$({10+2\sqrt{5}})π$D.$({8+2\sqrt{3}})π$

分析 由已知可得該幾何體是一個(gè)圓柱與圓錐的組合體,其表面積相當(dāng)于圓錐的表面積與圓柱側(cè)面積的和,進(jìn)而得到答案.

解答 解:由已知可得該幾何體是一個(gè)圓柱與圓錐的組合體,
其表面積相當(dāng)于圓錐的表面積與圓柱側(cè)面積的和,
圓柱的底面直徑為2,半徑r=1,高h(yuǎn)=2,故側(cè)面積為:2πrh=4π;
圓錐的底面直徑為4,半徑r=2,高h(yuǎn)=1,母線長(zhǎng)為:$\sqrt{5}$,故表面積為:πr(r+l)=(4+2$\sqrt{5}$)π;
故組合體的表面積S=(8+2$\sqrt{5}$)π;
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是圓柱的體積與表面積,圓錐的體積與表面積,空間幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)命題p:函數(shù)y=log2(ax-1)在區(qū)間[1,2]內(nèi)單調(diào)遞增,命題q:“?x∈R,ax2-2ax+3>0”
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|2x-1|.
(1)在答題卷該題圖中畫(huà)出y=f(x)的圖象;
(2)求不等式f(x)+1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的夾角β為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{{(4+π)\sqrt{3}}}{3}$B.$\frac{(4+π)\sqrt{3}}{2}$C.$\frac{(4+π)\sqrt{3}}{6}$D.(4+π)$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=-f'(0)ex+2x+3,點(diǎn)P為曲線y=f(x)在點(diǎn)(0,f(0))處的切線l上的一點(diǎn),點(diǎn)Q在曲線$y=\frac{x}{e^x}$上,則|PQ|的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)滿足對(duì)?x∈R,f(-x)+f(x)=0,且x≥0時(shí),f(x)=ex+m(m為常數(shù)),則f(-ln5)的值為( 。
A.4B.-4C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等比數(shù)列{an}中,a1+a2=1,a4+a5=-8,則$\frac{{{a_7}+{a_8}}}{{{a_5}+{a_6}}}$=( 。
A.-8B.-4C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知|$\overrightarrow{a}$|=6,|$\overrightarrow$|=1,$\overrightarrow$•($\overrightarrow{a}$-$\overrightarrow$)=2,則<$\overrightarrow{a}$,$\overrightarrow$>值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案