x
+2)6的展開(kāi)式中x2項(xiàng)的系數(shù)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:二項(xiàng)式定理
分析:先求出二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于2,求得r的值,即可求得展開(kāi)式中x2項(xiàng)的系數(shù).
解答: 解:(
x
+2)6的展開(kāi)式的展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
6
•2rx3-
r
2
,
令3-
r
2
=2,求得r=2,∴展開(kāi)式中x2項(xiàng)的系數(shù)為
C
2
6
•22=60,
故答案為:60.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前項(xiàng)和為Sn,且Sn=
(an+1)2
4
,bn=
1
(n+1)n
,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)求證:(an+1)bn
1
nn-1
;
(Ⅲ)求證:a1b1+a2b2+…+anbn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),向量
b
=(-3,2).
(1)若向量k
a
+
b
與向量
a
-3
b
垂直,求實(shí)數(shù)k的值;
(2)當(dāng)k為何值時(shí),向量k
a
+
b
與向量
a
-3
b
平行?并說(shuō)明它們是同向還是反向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱錐的側(cè)面積是底面積的2倍,則側(cè)面與底面所成二面角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程x2log
1
2
a
-(2x+1)=0有實(shí)數(shù)根,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(
2
5
x-
π
4
)的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x+
2
x-1
(x>1)的值域?yàn)?div id="wnj7r77" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程sinx=ax3+c•tanx(a為常數(shù),a≠0)的所有根的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l1的方程為x+2y-2=0,將直線l1繞其與x軸交點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到直線l2,則l2的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案