.(本題滿分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點(diǎn).
(1)求證:平面PCE 平面PCD;
(2)求三棱錐P-EFC的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,.
(1)求證:FC∥平面AED;
(2)若,當(dāng)二面角為直二面角時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在四棱錐中,,,平面,為的中點(diǎn),.
(Ⅰ)求四棱錐的體積;
(Ⅱ)若為的中點(diǎn),求證:平面平面;
(Ⅲ)求二面角的大小。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖, 是邊長(zhǎng)為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求四面體PEFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直三棱柱中,,分別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且為的中點(diǎn).
求證:(1)平面平面;
(2)直線平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點(diǎn)E在棱PA上,且PE=2EA.
(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體 中,為中點(diǎn).
(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面若存在,求的長(zhǎng);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com