11.如圖所示的程序框圖,輸出的值為( 。
A.$\frac{15}{16}$B.$\frac{15}{12}$C.$\frac{13}{8}$D.$\frac{13}{4}$

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:當i=1時,滿足進行循環(huán)的條件,故S=$\frac{1}{2}$,i=2,
當i=2時,滿足進行循環(huán)的條件,故S=1,i=3,
當i=3時,滿足進行循環(huán)的條件,故S=$\frac{11}{8}$,i=4,
當i=4時,滿足進行循環(huán)的條件,故S=$\frac{13}{8}$,i=5,
當i=5時,不滿足進行循環(huán)的條件,
故輸出的S值為$\frac{13}{8}$,
故選:C.

點評 本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)$f(x)=1-x+{log_2}\frac{1-x}{1+x}$,則$f({\frac{1}{2}})+f({-\frac{1}{2}})$的值為(  )
A.0B.-2C.2D.$2{log_2}\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若關(guān)于x的方程4x-(a+3)2x+1=0有實數(shù)解,則實數(shù)a的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-$\frac{a}{x}-1$.
(1)若曲線y=f(x)存在斜率為-1的切線,求實數(shù)a的取值范圍;
(2)求f(x)的單調(diào)區(qū)間;
(3)設函數(shù)g(x)=$\frac{x+a}{lnx}$,求證:當-1<a<0時,g(x)在(1,+∞)上存在極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.復數(shù)z滿足z(2+i)=3-i,則復數(shù)z在復平面內(nèi)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(b>a>0)的右焦點為F,O為坐標原點,若存在直線l過點F交雙曲線C的右支于A,B兩點,使$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則雙曲線離心率的取值范圍是$\sqrt{3}$>e≥$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線l:y=x-1,雙曲線c1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,拋物線c2:y2=2x,直線l與c1相交于A,B兩點,與c2交于C,D兩點,若線段AB與CD的中點相同,則雙曲線c1的離心率為(  )
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且bsin2C=csinB.
(1)求角C;
(2)若$sin(B-\frac{π}{3})=\frac{3}{5}$,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在“二十四節(jié)氣入選非遺”宣傳活動中,從甲、乙、丙三位同學中任選兩人介紹一年中時令、氣候、物候等方面的變化規(guī)律,那么甲同學被選中的概率為( 。
A.1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案