有10個(gè)乒乓球,將它們?nèi)我夥殖蓛啥眩蟪鲞@兩堆乒乓球個(gè)數(shù)的乘積,再將每堆乒乓球任意分成兩堆并求出這兩堆乒乓球個(gè)數(shù)的乘積,如此下去,直到不能再分為止,則所有乘積的和為(  )
A、45B、55C、90D、100
考點(diǎn):歸納推理
專題:等差數(shù)列與等比數(shù)列,推理和證明
分析:用特殊值法,假設(shè)每次分出一個(gè),分別求出每一次的乘積,然后等差數(shù)列的性質(zhì)相加可得答案.
解答: 解:假設(shè)每次分堆時(shí)都是分出1個(gè)球,
第一次分完后應(yīng)該一堆是1個(gè)球,另一堆n-1個(gè),則乘積為1×(n-1)=n-1;
第二次分完后應(yīng)該一堆是1個(gè)球,另一堆n-2個(gè),則乘積為1×(n-2)=n-2;
依此類推
最后一次應(yīng)該是應(yīng)該一堆是1個(gè)球,另一堆1個(gè),則乘積為1×1=1;
設(shè)乘積的和為Tn,
則Tn=1+2+…+(n-1)=
1
2
n(n-1)
當(dāng)n=10時(shí),T10=
1
2
×10×(10-1)=45
故選:A
點(diǎn)評(píng):本題主要考查等差數(shù)列的求和.屬基礎(chǔ)題.在解答選擇填空題時(shí),特殊值法是常用方法之一.解決本題的關(guān)鍵在于特殊值法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f″(x),若在區(qū)間(a,b)上f″(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)“凸函數(shù)“;已知f(x)=
1
12
x4-
m
6
x3-
3
2
x2在(1,3)上為“凸函數(shù)”,則實(shí)數(shù)取值范圍是(  )
A、(-∞,
31
9
B、[
31
9
,5]
C、(-∞,-2)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y=ax2(a>0)的焦點(diǎn)F,作一直線交拋物線與P、Q兩點(diǎn),若線段PF的長(zhǎng)為
1
a
,則線段FQ的長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若數(shù)列{an}是等差數(shù)列,對(duì)于bn=(
1
n
)(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列,類比上述性質(zhì),若{cn}是各項(xiàng)為正數(shù)的等比數(shù)列,則數(shù)列{dn}(d>0)也是等比數(shù)列,寫出dn的表達(dá)式,并且證明你類比得到的命題是否為真命題.(2)設(shè)x>0,y>0,證明不等式(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)正方體的八個(gè)頂點(diǎn)都在一個(gè)球的表面上,若此正方體的棱長(zhǎng)為2,那么這個(gè)球的表面積是
 
.注:S=4πR2(R為球的半徑)

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�