(2012•深圳一模)已知等比數(shù)列{an}的第5項是二項式(
x
-
1
3x
)6
展開式的常數(shù)項,則a3a7=
25
9
25
9
分析:在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項,即得a5的值.再根據(jù)等比數(shù)列的性質(zhì)求得a3a7 的值.
解答:解:二項式(
x
-
1
3x
)6
展開式的通項公式為 Tr+1=
C
r
6
x
6-r
2
(-
1
3
)
r
•x-r=(-
1
3
)
r
C
r
6
x
6-3r
2

令6-3r=0,r=2,故展開式的常數(shù)項為 T3=(-
1
3
)
2
C
2
6
=
5
3

由題意可得 等比數(shù)列{an}的第5項 a5=
5
3

∴a3a7=a52=
25
9
,
故答案為
25
9
點評:本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù).等比數(shù)列的性質(zhì)應(yīng)用,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)隨機調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別有關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視 看書 合計
10 50 60
10 10 20
合計 20 60 80
(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時間段的休閑方式與性別有關(guān)系”?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知點P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運動,則z=x-y的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)如圖,平行四邊形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設(shè)C在平面ABD上的射影為O.

(1)當(dāng)α為何值時,三棱錐C-OAD的體積最大?最大值為多少?
(2)當(dāng)AD⊥BC時,求α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知數(shù)列{an}滿足:a1=
1
2
,an+1=
an
enan+e
,n∈N*
(其中e為自然對數(shù)的底數(shù)).
(1)求數(shù)列{an}的通項an;
(2)設(shè)Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求證:Sn
n
n+1
,Tne-n2

查看答案和解析>>

同步練習(xí)冊答案