精英家教網 > 高中數學 > 題目詳情

【題目】已知正項數列{an}的前n項和為Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設Tn為數列{ }的前n項和,證明: ≤Tn<1(n∈N+).

【答案】解:(Ⅰ)當n=1時,4a1=(a1+1)2 , 解得:a1=1, 當n≥2時,4Sn1=(an1+1)2 , 4Sn=(an+1)2 ,
兩式相減得:(an+an1)(an﹣an1﹣2)=0,
∵an>0,
∴an﹣an1=2,
∴數列{an}是以2為公差,以1為首項的等差數列,
∴an=2n﹣1;
證明:(Ⅱ) = =
∴Tn=(1﹣ )+( )+( )+…+( ),
=1﹣
∴Tn<1,
>0,
∴Tn≥T1=
≤Tn<1(n∈N+
【解析】(Ⅰ)當n=1時,即可求得a1=1,當n≥2時,4Sn1=(an1+1)2 , 4Sn=(an+1)2 , 兩式相減可得:(an+an1)(an﹣an1﹣2)=0,可知:an﹣an1=2,數列{an}是以2為公差,以1為首項的等差數列,即可求得數列{an}的通項公式;(Ⅱ) = ,根據“裂項法”即可求得Tn=1﹣ ,Tn<1,由Tn≥T1= .即可證明 ≤Tn<1(n∈N+).
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD,將△ABD折起到△PBD的位置,點E在線段CD上.
(1)求證:PE⊥BD;
(2)過點D作DM⊥BC交BC于點M,點N為PB中點,若PE∥平面DMN,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若關于的方程個不同實數根,則n的值不可能為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sin2x﹣2cos2x,下面結論中錯誤的是(
A.函數f(x)的最小正周期為π
B.函數f(x)的圖象關于x= 對稱
C.函數f(x)的圖象可由g(x)=2sin2x﹣1的圖象向右平移 個單位得到
D.函數f(x)在區(qū)間[0, ]上是增函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (a>0,且a≠1)在R上單調遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數解,則a的取值范圍是(
A.(0, ]
B.[ , ]
C.[ ]∪{ }
D.[ , )∪{ }

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,直線的參數方程為,(為參數),圓的標準方程為.以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求直線和圓的極坐標方程;

(2)若射線與的交點為,與圓的交點為,且點恰好為線段的中點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,輸出的結果S的值為(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分) 某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質量指數與空氣質量等級對應關系如下表(假設該區(qū)域空氣質量指數不會超過):

空氣質量指數

空氣質量等級

級優(yōu)

級良

級輕度污染

級中度污染

級重度污染

級嚴重污染

該社團將該校區(qū)在天的空氣質量指數監(jiān)測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率

請估算年(以天計算)全年空氣質量優(yōu)良的天數(未滿一天按一天計算);

)該校日將作為高考考場,若這兩天中某天出現級重度污染,需要凈化空氣費用元,出現級嚴重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數學期望

查看答案和解析>>

同步練習冊答案