已知f(x)=x2-2(n+1)x+n2+5n-7,

(1)設(shè)f(x)的圖象的頂點的縱坐標構(gòu)成數(shù)列{an},求證:{an}為等差數(shù)列;

(2)設(shè)f(x)的圖象的頂點到x軸的距離構(gòu)成{bn},求{bn}的前n項和.

(1)證明:f(x)=[x-(n+1)2]+3n-8,

∴an=3n-8.∵an-1-an=3,

∴{an}為等差數(shù)列.

(2)解析:bn=|3n-8|,

當1≤n≤2時,bn=8-3n,b1=5.

Sn=;

當n≥3時,bn=3n-8.

Sn=5+2+1+4+…+(3n-8)

=7+

=.

∴Sn=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)當a=
1
2
時,解不等式f(x)≤0;
(Ⅱ)若a>0,解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,則f{f[f(-2)]}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2,x>0
f(x+1),x≤0
則f(2)+f(-1)
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱;
(1)已知f(x)=
x2-mx+1x
的圖象關(guān)于點(0,1)對稱,求實數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=-2x-n(x-1),求函數(shù)g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的條件下,若對實數(shù)x<0及t>0,恒有g(shù)(x)+tf(t)>0,求正實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若對任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),則實數(shù)m的取值范圍是
m
1
4
m
1
4

查看答案和解析>>

同步練習(xí)冊答案