若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個(gè)棱柱的體積為_(kāi)___________。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
定義:區(qū)間的長(zhǎng)度為.已知函數(shù)的定義域?yàn)?sub>,值域?yàn)?sub>,則區(qū)間的長(zhǎng)度的最大值與最小值的差為_(kāi)________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,四棱錐P-ABCD中,底面ABCD為直角梯形,,點(diǎn)E在棱PA上,且PE=2EA.
(1) 求異面直線PA與CD所成的角;
(2) 求證:PC平行平面EBD;
(3) 求二面角A-BE-D的平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在正方體的8個(gè)頂點(diǎn)中任意選擇4個(gè)頂點(diǎn),它們可能是如下幾何圖形的4個(gè)頂點(diǎn),這些幾何圖形是 .(寫出所有正確結(jié)論的編號(hào)).
①梯形;
②矩形;
③有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊
三角形的四面體;
④每個(gè)面都是等邊三角形的四面體;
⑤每個(gè)面都是等腰直角三角形的四面體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知是兩條不重合的直線,是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若,,則 ②若
③若 ④若
其中正確命題的序號(hào)有____________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及其極值;
(Ⅱ)證明:對(duì)一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
橢圓G:的兩個(gè)焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上的
一點(diǎn),且滿足
(Ⅰ)求離心率e的取值范圍;
(Ⅱ)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為求此時(shí)
橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點(diǎn)A、B,Q
為AB的中點(diǎn),問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知是實(shí)數(shù),函數(shù)。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)為在區(qū)間上的最小值。
(i)寫出的表達(dá)式;
(ii)求的取值范圍,使得。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com