若變量x,y滿足約束條件
y≤1
x+y≥0
x-y-2≤0
,建立直角坐標(biāo)系,畫出不等式組表示的平面區(qū)域,求z=x-2y的最大值并求出取得最值時的最優(yōu)解的坐標(biāo).
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=x-2y,得y=
1
2
x-
z
2

平移直線y=
1
2
x-
z
2
,由圖象可知當(dāng)直線y=
1
2
x-
z
2
經(jīng)過點A時,直線y=
1
2
x-
z
2
的截距最小,
此時z最大,
x+y=0
x-y-2=0
,解得
x=1
y=-1
,
即A(1,-1),
∴最優(yōu)解的坐標(biāo)為(1,-1),
此時zmax=1-2(-1)=1+2=3.
點評:本題主要考查線性規(guī)劃的應(yīng)用,作出平面區(qū)域,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
2x-3
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題說法正確的是( 。
A、命題p:“存在x∈R,sinx+cosx=
3
”,則¬p是假命題
B、“a=1”是“函數(shù)f(x)=cos2ax-sin2ax的周期T=π”的充分必要條件
C、命題“存在x∈R,使得x2+x+1=0”的否定是:“對任意x∈R,x2+x+1≥0”
D、命題“若tanα≠1,則α≠
π
4
”的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(0,4),離心率為
3
5

(1)求C的方程;
(2)求過點(3,0)且斜率為
4
5
的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且cos2C+3cosC=1,c=
7
,又S△ABC=
3
3
2

(Ⅰ)求角C的大;
(Ⅱ)求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(Ⅰ)若當(dāng)g(x)≤5時,恒有f(x)≤6,求a的最大值;
(Ⅱ)若當(dāng)x∈R時,恒有f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+a,
(1)當(dāng)a=-2時,求不等式f(x)>1的解集
(2)若對任意的x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,…,a11成等比數(shù)列,當(dāng)n≥11時,an>0.
(Ⅰ)求證:當(dāng)n≥11時,{an}成等差數(shù)列;
(Ⅱ)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線ρ(sinθ-cosθ)=a與曲線ρ=2cosθ-4sinθ相交于A,B兩點,若|AB|=2
3
,則實數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊答案