(本小題滿分16分)已知函數(shù)f(x)=x2-(1+2a)x+alnx(a為常數(shù)).
(1)當(dāng)a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時,討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.
解:(1)當(dāng)時, 則
所以 ,且 .
所以曲線在處的切線的方程為:,
即:.
(2).由題意得
=
由得
①當(dāng)時,由,又知得或
由,又知,得
所以函數(shù)的單調(diào)增區(qū)間是和,單調(diào)減區(qū)間是
②當(dāng)時,,且僅當(dāng)時,,
所以函數(shù)在區(qū)間上是單調(diào)增函數(shù).
③當(dāng)時, 由,又知得或
由,又知,得
所以函數(shù)的單調(diào)增區(qū)間是和,單調(diào)減區(qū)間是
④當(dāng)時, 由,又知得
由,又知,得
所以函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
( 12分)設(shè)函數(shù).
(1)寫出定義域及的解析式;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)若對任意,恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某廠家擬在2012年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的
年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元((為
常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2012年生產(chǎn)該產(chǎn)品的
固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格
定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(Ⅰ) 將2012年該產(chǎn)品的利潤y萬元表示為年促銷費(fèi)用萬元的函數(shù);
(Ⅱ) 該廠家2012年的促銷費(fèi)用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)已知函數(shù),
(1)當(dāng)t=1時,求曲線處的切線方程;
(2)當(dāng)t≠0時,求的單調(diào)區(qū)間;
(3)證明:對任意的在區(qū)間(0,1)內(nèi)均存在零點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知x = 1是的一個極值點
(I)求b的值;
(II)求函數(shù)f(x)的單調(diào)減區(qū)間;
(III)設(shè),試問過點(2,5)可作多少條直線與曲線相切?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)的圖象過點(1, -4),且函數(shù)的圖象關(guān)于y軸對稱.
(1) 求m、n的值及函數(shù)的極值;
(2) 求函數(shù)在區(qū)間上的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com