【題目】已知在四棱錐中,,,,,且平面平面
(1)設(shè)點(diǎn)為線段的中點(diǎn),試證明平面;
(2)若直線與平面所成的角為60°,求四棱錐的體積.
【答案】(1)證明見解析(2)
【解析】
(1)取中點(diǎn)為,通過面面垂直,結(jié)合//,即可容易證明;
(2)根據(jù)線面角,求得,先證平面,結(jié)合即可容易求得.
(1)證明:取的中點(diǎn),連接和,
∵在中,∴.
由于平面平面,且交線為,∴平面.
又∵,分別為,的中點(diǎn),∴//且.
又//,,∴//且.
∴四邊形為平行四邊形.∴//,
∴平面.
(2)由(1)中所證,不妨取中點(diǎn)為,則一定有平面.
所以直線與平面所成的角為,
由于,∴,
又//∴、點(diǎn)到平面的距離相等,
∵平面平面,,
∴平面∴點(diǎn)到平面的距離等于2.
故可得;
.
又因?yàn)?/span>點(diǎn)到平面的距離為,點(diǎn)到平面的距離為,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示,則下列敘述正確的是( )
A.函數(shù)的圖象可由的圖象向左平移個(gè)單位得到
B.函數(shù)的圖象關(guān)于直線對(duì)稱
C.函數(shù)在區(qū)間上是單調(diào)遞增的
D.函數(shù)圖象的對(duì)稱中心為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長(zhǎng)為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))
(1)記四邊形的周長(zhǎng)為,求的表達(dá)式;
(2)要使改建成的展示區(qū)的面積最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ex﹣2,x>0.
(1)求函數(shù)y=f(x)的圖象在點(diǎn)x=2處的切線方程;
(2)求證:f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,過點(diǎn)P(1,2)的直線l的參數(shù)方程為為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于M,N兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記不等式組 ,表示的平面區(qū)域?yàn)?/span> .下面給出的四個(gè)命題: ; ; ; 其中真命題的是:
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線l的方程是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com