12.已知函數(shù)f(x)=4x-2x+1-b(b∈R).
(1)若f(x)有零點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)f(x)有零點(diǎn)時(shí),討論f(x)有零點(diǎn)的個(gè)數(shù),并求出f(x)的零點(diǎn).

分析 (1)由f(x)=0,可得-b=2x(2x-2),運(yùn)用配方和指數(shù)函數(shù)的性質(zhì),可得右邊函數(shù)的范圍,即可得到b的范圍;
(2)分①當(dāng)b=-1 時(shí),②當(dāng) 0>b>-1 時(shí),③當(dāng)b≥0時(shí),④當(dāng)b<-1時(shí)四種情況,分別由條件求得2x 的值,求得x的值,從而得出結(jié)論.

解答 解:(1)原函數(shù)有零點(diǎn)即方程4x-2x+1-b=0 有根.
化簡方程為b=4x-2x+1=22x-2•2x=(2x-1)2-1≥-1,
故當(dāng)b的范圍為[-1,+∞)時(shí)函數(shù)存在零點(diǎn).
(2)①當(dāng)b=-1 時(shí),2x=1,∴方程有唯一解x=0.
②當(dāng) 0>b>-1 時(shí),∵(2x-1)2=1+b>0,可得 2x=1+$\sqrt{1+b}$,或2x=1-$\sqrt{1+b}$,
解得 x=log2(1+$\sqrt{1+b}$),或x=log2(1-$\sqrt{1+b}$),故此時(shí)方程有2個(gè)解.
③當(dāng)b≥0時(shí),∵(2x-1)2=1+b>1,可得 2x=1+1+$\sqrt{1+b}$,或2x═1-$\sqrt{1+b}$,(舍去),
解得 x=log2(1+$\sqrt{1+b}$),故此時(shí)方程有唯一解.
④當(dāng)b<-1時(shí),∵(2x-1)2=1+b<0,2x 無解,原方程無解.
綜上可得,當(dāng)-1<b<0時(shí)原方程有兩解:x=log2(1+$\sqrt{1+b}$),或x=log2(1-$\sqrt{1+b}$);
當(dāng)b≥0 時(shí),方程有唯一解x=log2(1+$\sqrt{1+b}$),
當(dāng)b=-1 時(shí),原方程有唯一解x=0;
當(dāng)b<-1 時(shí),原方程無解.

點(diǎn)評(píng) 本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了等價(jià)轉(zhuǎn)化和數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=($\frac{1}{3}$)|x|-a-1有零點(diǎn),則a的取值范圍是( 。
A.-1<a≤0B.-1<a<0C.a>-1D.0<a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z滿足(1-i)z=m+i (m∈R,i為虛數(shù)單位),在復(fù)平面上z對(duì)應(yīng)的點(diǎn)不可能在    ( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.寫出下列程序運(yùn)行后的結(jié)果.
(1)

輸出結(jié)果為1,3,5,7,9;
(2)
輸出結(jié)果為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{bn}滿足:b2=8,$|\begin{array}{l}{_{n+1}}&{_{n}}\\{n+1}&{n-1}\end{array}|$=0.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令bn=an+n(n∈N*),是否存在非零實(shí)數(shù)p,q使得{$\frac{{a}_{n}}{np+q}$}成等差數(shù)列?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=2sin(ωx+φ),ω>0,|φ|<$\frac{π}{2}$,滿足f(x)+f(x+$\frac{π}{2}}$)=0對(duì)任意的x∈R恒成立,且x=$\frac{π}{6}$為其圖象的一條對(duì)稱軸方程,則f(${\frac{11π}{4}}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若某圓柱體的上部挖掉一個(gè)半球,下部挖掉一個(gè)圓錐后所得的幾何體的三視圖中的正(主)視圖和側(cè)(左)視圖如圖所示,則此時(shí)幾何體的體積是( 。
A.B.$\frac{4π}{3}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}滿足a1=1,${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N+).
(1)證明:數(shù)列$\left\{{\frac{2^n}{a_n}}\right\}$是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊,已知c=$\sqrt{3}$,b=1,B=30°.求角C及△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案