【題目】已知,橢圓的離心率為,直線交于,兩點,長度的最大值為4.

1)求的方程;

2)直線軸的交點為,當直線變化(不與軸重合)時,若,求點的坐標.

【答案】1;(2.

【解析】

(1)由橢圓中弦長最長的位置在長軸位置可得的值,再由離心率并結合求得的值,從而求得橢圓的標準方程;

(2)如圖所示:

由題中關系式利用平面幾何知識結合正弦定理可得:MPA=∠MPB,進而可得kPA=-kPB,設A點坐標,B點坐標,M點坐標(,0)和直線l的方程,和橢圓方程聯(lián)立化簡得,然后利用根的判別式、韋達定理和斜率公式綜合運算可得的值.

1)由題意弦長AB長度的最大值為4,可得2a=4即得a=2,由離心率,

聯(lián)立解得=4, =3,所以橢圓的方程為.

2)設的方程為,代入橢圓方程并整理得

,

解得,

,.

因為,由角平分定理或正弦定理,即可得到

,即,所以,即,

,所以,

,

所以,因為為變量,所以,

所以點的坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出下列命題:

既是奇函數(shù)又是偶函數(shù),則

是奇函數(shù),且,則至少有三個零點;

上不是單調函數(shù),則不存在反函數(shù);

的最大值和最小值分別為、,則的值域為

則其中正確的命題個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系.若曲線的極坐標方程為點的極坐標為,在平面直角坐標系中,直線經過點,且傾斜角為.

(1)寫出曲線的直角坐標方程以及點的直角坐標;

(2)設直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點P2,1).

1)求橢圓C的方程,并求其離心率;

2)過點Px軸的垂線l,設點A為第四象限內一點且在橢圓C上(點A不在直線l上),點A關于l的對稱點為A',直線A'PC交于另一點B.設O為原點,判斷直線AB與直線OP的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:,且、成等差數(shù)列,其中.

1)求實數(shù)的值和數(shù)列的通項公式;

2)若數(shù)列滿足等式:),求數(shù)列的前項和

3)在(2)的條件下,問:是否存在這樣的正數(shù),可以確保恰有5個自然數(shù)使得不等式成立?若存在,求的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x﹣a|+3x,其中a>0.

(1)當a=1時,求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足對所有正整數(shù)成立,則稱數(shù)列,現(xiàn)已知數(shù)列是“數(shù)列”.

1)若,求的值;

2)若對所有成立,且存在使得,求的所有可能值,并求出相應的的通項公式;

3)數(shù)列滿足,證明:是等比數(shù)列當且僅當是等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點到兩點、的距離之和等于,設點的軌跡為,斜率為的直線過點,且與軌跡交于、兩點.

1)寫出軌跡的方程;

2)如果,求的值;

3)是否存在直線,使得在直線上存在點,滿足為等邊三角形?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列,定義,

(1),是否存在,使得?請說明理由;

(2) , ,求數(shù)列的通項公式;

(3) ,求證:“為等差數(shù)列”的充要條件是“的前4項為等差數(shù)列,為等差數(shù)列”.

查看答案和解析>>

同步練習冊答案