【題目】設(shè)為奇函數(shù),為常數(shù).

1)求證:上的增函數(shù);

2)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)取值范圍.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)由奇函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)可得,,即,則令,得到的根必為相反數(shù),從而求出a,再根據(jù)定義法證明上的增函數(shù)即可;

2)由題意知,時(shí)恒成立,令,根據(jù)單調(diào)性的運(yùn)算可判斷的單調(diào)性,從而求出最值.

1)∵是奇函數(shù),∴定義域關(guān)于原點(diǎn)對(duì)稱(chēng),

,得.令,得,

,解得,,令,

設(shè)任意,且,則

,∴,,,∴,即

是減函數(shù),又為減函數(shù),

上為增函數(shù);

2)由題意知,時(shí)恒成立,

,

由(2)知上為增函數(shù),又上也是增函數(shù),

上為增函數(shù),∴的最小值為,

,故實(shí)數(shù)的范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若不經(jīng)過(guò)點(diǎn)的直線(xiàn)交于兩點(diǎn),且直線(xiàn)與直線(xiàn)的斜率之和為,證明:直線(xiàn)的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù),點(diǎn)、分別是的圖象與軸、軸的交點(diǎn),、分別是的圖象上橫坐標(biāo)為、的兩點(diǎn),軸,且、三點(diǎn)共線(xiàn).

1)求函數(shù)的解析式;

2)若,,求;

3)若關(guān)于的函數(shù)在區(qū)間上恰好有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)是函數(shù)的反函數(shù).

求函數(shù)的解析式,并寫(xiě)出定義域

設(shè),判斷并證明函數(shù)在區(qū)間上的單調(diào)性:

中的函數(shù)在區(qū)間內(nèi)的圖像是不間斷的光滑曲線(xiàn),求證:函數(shù)在區(qū)間內(nèi)必有唯一的零點(diǎn)(假設(shè)為),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿(mǎn)足對(duì)于任意實(shí)數(shù),都有,且當(dāng)時(shí),,

1)判斷的奇偶性并證明;

2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)力相等的甲、乙兩隊(duì)參加乒乓球團(tuán)體比 賽,規(guī)定53勝制(即5局內(nèi)誰(shuí)先贏3局就算勝出并停止比賽).

⑴試求甲打完5局才能取勝的概率.

⑵按比賽規(guī)則甲獲勝的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018安徽江南十校高三3月聯(lián)考線(xiàn)段為圓 的一條直徑,其端點(diǎn), 在拋物線(xiàn) 上,且, 兩點(diǎn)到拋物線(xiàn)焦點(diǎn)的距離之和為

I)求直徑所在的直線(xiàn)方程;

II)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn), 兩點(diǎn),拋物線(xiàn), 處的切線(xiàn)相交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)過(guò)點(diǎn),傾斜角為.

(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程與直線(xiàn)的參數(shù)方程;

(Ⅱ)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)M為滿(mǎn)足下列條件的函數(shù)構(gòu)成的集合,存在實(shí)數(shù),使得.

1)判斷是否為M中的元素,并說(shuō)明理由;

2)設(shè),求實(shí)數(shù)a的取值范圍;

3)已知的圖象與的圖象交于點(diǎn),證明:中的元素,并求出此時(shí)的值(用表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案