【題目】設(shè)為奇函數(shù),為常數(shù).
(1)求證:是上的增函數(shù);
(2)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)取值范圍.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)由奇函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)可得,,即,則令,得到的根必為相反數(shù),從而求出a,再根據(jù)定義法證明是上的增函數(shù)即可;
(2)由題意知,時(shí)恒成立,令,根據(jù)單調(diào)性的運(yùn)算可判斷的單調(diào)性,從而求出最值.
(1)∵是奇函數(shù),∴定義域關(guān)于原點(diǎn)對(duì)稱(chēng),
由,得.令,得,,
∴,解得,,令,
設(shè)任意,且,則,
∵,∴,,,∴,即.
∴是減函數(shù),又為減函數(shù),
∴在上為增函數(shù);
(2)由題意知,時(shí)恒成立,
令,,
由(2)知在上為增函數(shù),又在上也是增函數(shù),
故在上為增函數(shù),∴的最小值為,
∴,故實(shí)數(shù)的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若不經(jīng)過(guò)點(diǎn)的直線(xiàn)與交于兩點(diǎn),且直線(xiàn)與直線(xiàn)的斜率之和為,證明:直線(xiàn)的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù),點(diǎn)、分別是的圖象與軸、軸的交點(diǎn),、分別是的圖象上橫坐標(biāo)為、的兩點(diǎn),軸,且、、三點(diǎn)共線(xiàn).
(1)求函數(shù)的解析式;
(2)若,,求;
(3)若關(guān)于的函數(shù)在區(qū)間上恰好有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)是函數(shù)的反函數(shù).
求函數(shù)的解析式,并寫(xiě)出定義域;
設(shè),判斷并證明函數(shù)在區(qū)間上的單調(diào)性:
若中的函數(shù)在區(qū)間內(nèi)的圖像是不間斷的光滑曲線(xiàn),求證:函數(shù)在區(qū)間內(nèi)必有唯一的零點(diǎn)(假設(shè)為),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)滿(mǎn)足對(duì)于任意實(shí)數(shù),都有,且當(dāng)時(shí),,.
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)力相等的甲、乙兩隊(duì)參加乒乓球團(tuán)體比 賽,規(guī)定5局3勝制(即5局內(nèi)誰(shuí)先贏3局就算勝出并停止比賽).
⑴試求甲打完5局才能取勝的概率.
⑵按比賽規(guī)則甲獲勝的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018安徽江南十校高三3月聯(lián)考】線(xiàn)段為圓: 的一條直徑,其端點(diǎn), 在拋物線(xiàn): 上,且, 兩點(diǎn)到拋物線(xiàn)焦點(diǎn)的距離之和為.
(I)求直徑所在的直線(xiàn)方程;
(II)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于, 兩點(diǎn),拋物線(xiàn)在, 處的切線(xiàn)相交于點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)過(guò)點(diǎn),傾斜角為.
(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程與直線(xiàn)的參數(shù)方程;
(Ⅱ)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)M為滿(mǎn)足下列條件的函數(shù)構(gòu)成的集合,存在實(shí)數(shù),使得.
(1)判斷是否為M中的元素,并說(shuō)明理由;
(2)設(shè),求實(shí)數(shù)a的取值范圍;
(3)已知的圖象與的圖象交于點(diǎn),,證明:是中的元素,并求出此時(shí)的值(用表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com