如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角

(1)求BC的長度;

(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的張角分別為,,問點P在何處時,最小?

 

【答案】

(1);(2)在距離時,最小

【解析】

試題分析:(1)由題意不難想到作 于,這樣能將條件很好的集中在 和 中,不妨設出一長度和角度,即設,在上述兩直角三角形中,由直角三角形中正切的含義即,這樣就可得到關于的一元二次方程,就可解得值; (2)先在圖中含有的兩個直角三角形中,得到,再由兩角和的正切公式可求出關于的表達式,通過化簡得,結合基本不等式可求出它的最小值,并由基本不等式成立的條件得到此時的值,即可確定出的位置.

試題解析:解:(1)如圖作 于 .

 .

 ,

 .

 和 中,

          4分

 

化簡整理得 ,

解得 .

 的長度是 .           7分

(2)設 ,所以            9分

     14分 當且僅當 ,即 時, 最。    15分

答: 在距離 時, 最。           16分

考點:1.解三角形;2.兩角和的正切公式;3.基本不等式的應用

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩座建筑物AB,CD的高度分別是9m和15m,從建筑AB看建筑物CD的張角∠CAD=45°,求建筑物AB和CD的底部之間的距離BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•徐州一模)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角∠CAD=45°.
(1)求BC的長度;
(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的張角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,兩座建筑物AB,CD的高度分別為9m和15m,從建筑物AB的頂部看建筑物CD的張角∠CAD=45°.
(1)求建筑物AB和CD的底部之間的距離BD;
(2)求∠ADB的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆江蘇省寶應縣高一下學期期中考試數(shù)學試卷(解析版) 題型:解答題

如圖,兩座建筑物AB,CD的高度分別是9m和15m,從建筑物AB的頂部看建筑物CD的張角,求建筑物AB和CD底部之間的距離BD

 

查看答案和解析>>

同步練習冊答案