從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t.問:(1)求長方體的容積V關于x的函數(shù)表達式;(2)x取何值時,長方體的容積V有最大值?

 

 

 

 

 

 

【答案】

 (1)長方體的容積

,得,

(2)由均值不等式知

,

,即時等號成立。

(1)當,即,

(2)當,即時,

,則上單調遞減,

,單調遞增,

總之,若,則當時, ;

,則當時,

(注:直接對V求導也可)

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從邊長為2a的正方形鐵片的四個角各截去一個邊為x的正方形,再將四邊向上折起,做成一個無蓋的長方形鐵盒,要求長方體的高度與底面邊的比值不超過常數(shù)t(t>0).試問當x取何值時,容量V有最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t.問:
(1)求長方體的容積V關于x的函數(shù)表達式;
(2)x取何值時,長方體的容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:2011——2012學年湖北省洪湖二中高三八月份月考試卷理科數(shù)學 題型:解答題

(本題滿分12分)
從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t.
問:(1)求長方體的容積V關于x的函數(shù)表達式;(2)x取何值時,長方體的容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省宜昌市夷陵中學、荊門市鐘祥一中高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t.問:
(1)求長方體的容積V關于x的函數(shù)表達式;
(2)x取何值時,長方體的容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學理卷 題型:解答題

(12分)如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t,問:x取何值時,長方體的容積V有最大值?

 

查看答案和解析>>

同步練習冊答案