【題目】現(xiàn)有4個(gè)人去參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(1)求這4個(gè)人中恰有2個(gè)人去參加甲游戲的概率;

(2) 用X表示這4個(gè)人中去參加乙游戲的人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).

【答案】(1);(2)見(jiàn)解析

【解析】

(1)參加甲游戲的概率P=,可求這4個(gè)人中恰有2個(gè)人去參加甲游戲的概率P2計(jì)算即可得出結(jié)果; (2)由ξ~B,可得ξ服從二項(xiàng)分布,因此可得其分布列和期望.

(1)由題意可得:參加甲游戲的概率P=

則這4個(gè)人中恰有2個(gè)人去參加甲游戲的概率P2==

(2)ξ~B.∴P(ξ=k)=,k=0,1,2,3,4.

X

0

1

2

3

4

P

ξ服從二項(xiàng)分布

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時(shí),,則使得成立的的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解市民對(duì)A,B兩個(gè)品牌共享單車使用情況的滿意程度,分別從使用A,B兩個(gè)品牌單車的市民中隨機(jī)抽取了100人,對(duì)這兩個(gè)品牌的單車進(jìn)行評(píng)分,滿分60分.根據(jù)調(diào)查,得到A品牌單車評(píng)分的頻率分布直方圖,和B品牌單車評(píng)分的頻數(shù)分布表:

根據(jù)用戶的評(píng)分,定義用戶對(duì)共享單車評(píng)價(jià)的“滿意度指數(shù)”如下:

評(píng)分

滿意度指數(shù)

(1)求對(duì)A品牌單車評(píng)價(jià)“滿意度指數(shù)”為的人數(shù);

(2)從對(duì)A,B兩個(gè)品牌單車評(píng)分都在范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人是A品牌單車的評(píng)分人的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知五邊形是由直角梯形和等腰直角三角形構(gòu)成,如圖所示, , , ,且,將五邊形沿著折起,且使平面平面.

(Ⅰ)若中點(diǎn),邊上是否存在一點(diǎn),使得平面?若存在,求的值;若不存在,說(shuō)明理由;

(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.

(1)若函數(shù)上的極小值不大于,求的取值范圍;

(2)設(shè),證明: 上的最小值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,透明塑料制成的長(zhǎng)方體ABCD﹣A1B1C1D1內(nèi)灌進(jìn)一些水,固定容器底面一邊BC于水平地面上,再將容器傾斜,隨著傾斜度不同,有下面五個(gè)命題:

①有水的部分始終呈棱柱形;

②沒(méi)有水的部分始終呈棱柱形;

③水面EFGH所在四邊形的面積為定值;

④棱A1D1始終與水面所在平面平行;

⑤當(dāng)容器傾斜如圖(3)所示時(shí),BEBF是定值.

其中所有正確命題的序號(hào)是 ____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為實(shí)常數(shù).

(1)討論函數(shù)的極值;

(2)當(dāng)是函數(shù)的極值點(diǎn)時(shí),令,設(shè),比較的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)已知定點(diǎn),是否存在過(guò)的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為25cm的正方形中挖去邊長(zhǎng)為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問(wèn)粒子落在中間帶形區(qū)域的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案