是定義在上的增函數(shù),且
(1)、求的值;(2)、若,解不等式.

(1); (2)

解析試題分析:(1)結(jié)合通過賦值可得;(2)先由抽象函數(shù)的性質(zhì)可求得,從而將不等式轉(zhuǎn)化為,再利用函數(shù)的單調(diào)性和定義域解得的取值范圍,即:.本題注意通過賦值處理抽象函數(shù)的方法,易錯(cuò)點(diǎn)是容易漏掉函數(shù)定義域的考慮.
試題解析:⑴在等式中令,則;       3分
⑵在等式中令,
 ,       7分
故原不等式為:
上為增函數(shù),故原不等式等價(jià)于:
即:    12分
考點(diǎn):1.抽象函數(shù);2.函數(shù)的單調(diào)性;3.解不等式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若函數(shù)為奇函數(shù),求的值.
(2)若,有唯一實(shí)數(shù)解,求的取值范圍.
(3)若,則是否存在實(shí)數(shù),使得函數(shù)的定義域和值域都為。若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若非零函數(shù)對任意實(shí)數(shù)均有,且當(dāng)時(shí)
(1)求證:;
(2)求證:為R上的減函數(shù);
(3)當(dāng)時(shí), 對恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)定義在上的奇函數(shù)
(1).求值;(4分)
(2).若上單調(diào)遞增,且,求實(shí)數(shù)的取值范圍.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義域?yàn)镽的奇函數(shù),,
⑴求實(shí)數(shù)的值;
⑵若在x∈[2,3]上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且上是減函數(shù),解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),畫出函數(shù)的簡圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),判斷并證明的奇偶性;
(2)是否存在實(shí)數(shù),使得是奇函數(shù)?若存在,求出;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)不等式對一切R恒成立,求實(shí)數(shù)的取值范圍;
(2)已知是定義在上的奇函數(shù),當(dāng)時(shí),,求的解析式.

查看答案和解析>>

同步練習(xí)冊答案