分析 (I)Sn=2an-2n,利用遞推關(guān)系可得:an+1=2an+1-2an-2,即an+1=2an+2.再利用等比數(shù)列的系統(tǒng)公司即可得出.
(II)由(Ⅰ)得cn=n+1,可得:1cncn+1=1n+1−1n+2,利用“裂項(xiàng)求和”方法與數(shù)列的單調(diào)性即可得出.
解答 解:(Ⅰ)∵Sn=2an-2n,
∴Sn+1=2an+1-2(n+1),從而an+1=2an+1-2an-2,
即an+1=2an+2.∴bn+1bn=an+1+2an+2=2an+4an+2=2.
又a1=S1=2a1-2,∴a1=2,b1=a1+2=4≠0,
∴{bn}是首項(xiàng)為4,公比為2的等比數(shù)列,
∴bn=4×2n−1=2n+1,從而an=2n+1−2.
(Ⅱ)證明:由(Ⅰ)得cn=n+1,
∴1cncn+1=1(n+1)(n+2)=1n+1−1n+2,
從而Tn=(12−13)+(13−14)+…+(1n+1−1n+2)=12−1n+2<12.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系與等比數(shù)列的通項(xiàng)公式、對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和方法”、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | →BE | ||
C. | →CF | D. | 以上答案都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x+y+5=0 | B. | 2x-y-3=0 | C. | 3x-y-7=0 | D. | 3x-y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin|x| | B. | y=|sinx| | C. | y=sinx2 | D. | y=cosx4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 13 | B. | 16 | C. | 112 | D. | 124 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
烹調(diào) | 包裝 | 利潤(rùn) | |
A | 1 | 3 | 40 |
B | 2 | 2 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | -1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 4 | 1.5 | 4 | 1 |
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com