【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),,求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對(duì)a分類討論,即可得出單調(diào)性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時(shí),0≤-+1恒成立.當(dāng)x>-1時(shí),a令g(x)=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.
解法一:(1)
①當(dāng)時(shí),
-1 | |||
- | 0 | + | |
↘ | 極小值 | ↗ |
所以在上單調(diào)遞減,在單調(diào)遞增.
②當(dāng)時(shí),的根為或.
若,即,
-1 | |||||
+ | 0 | - | 0 | + | |
↗ | 極大值 | ↘ | 極小值 | ↗ |
所以在,上單調(diào)遞增,在上單調(diào)遞減.
若,即,
在上恒成立,所以在上單調(diào)遞增,無減區(qū)間.
若,即,
-1 | |||||
+ | 0 | - | 0 | + | |
↗ | 極大值 | ↘ | 極小值 | ↗ |
所以在,上單調(diào)遞增,在上單調(diào)遞減.
綜上:
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),在,上單調(diào)遞增,在上單調(diào)遞減;
自時(shí),在上單調(diào)遞增,無減區(qū)間;
當(dāng)時(shí),在,上單調(diào)遞增,在上單調(diào)遞減.
(2)因?yàn)?/span>,所以.
當(dāng)時(shí),恒成立.
當(dāng)時(shí),.
令,,
設(shè),
因?yàn)?/span>在上恒成立,
即在上單調(diào)遞增.
又因?yàn)?/span>,所以在上單調(diào)遞減,在上單調(diào)遞增,
則,所以.
綜上,的取值范圍為.
解法二:(1)同解法一;
(2)令,
所以,
當(dāng)時(shí),,則在上單調(diào)遞增,
所以,滿足題意.
當(dāng)時(shí),
令,
因?yàn)?/span>,即在上單調(diào)遞增.
又因?yàn)?/span>,,
所以在上有唯一的解,記為,
- | 0 | + | |
↘ | 極小值 | ↗ |
,滿足題意.
當(dāng)時(shí),,不滿足題意.
綜上,的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,由一塊扇形空地,其中,米,計(jì)劃在此扇形空地區(qū)域?yàn)閷W(xué)生建燈光籃球運(yùn)動(dòng)場(chǎng),區(qū)域內(nèi)安裝一批照明燈,點(diǎn)、選在線段上(點(diǎn)、分別不與點(diǎn)、重合),且.
(1)若點(diǎn)在距離點(diǎn)米處,求點(diǎn)、之間的距離;
(2)為了使運(yùn)動(dòng)場(chǎng)地區(qū)域最大化,要求面積盡可能的小,記,請(qǐng)用表示的面積,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(1)記“選出2人外出參加交流活動(dòng)次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)若函數(shù)的圖象與函數(shù)的圖象相切,求的值;
(2)設(shè)函數(shù),. 若存在,,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|= 的虛部為2,z所對(duì)應(yīng)的點(diǎn)在第一象限,
(1)求z;
(2)若z,z2,z-z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A,B,C,求cos∠ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計(jì)劃舉辦“國學(xué)”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動(dòng),在活動(dòng)前,對(duì)所選的10名同學(xué)進(jìn)行了國學(xué)素養(yǎng)測(cè)試,這10名同學(xué)的性別和測(cè)試成績(百分制)的莖葉圖如圖所示.
(1)分別計(jì)算這10名同學(xué)中,男女生測(cè)試的平均成績;
(2)若這10名同學(xué)中,男生和女生的國學(xué)素養(yǎng)測(cè)試成績的標(biāo)準(zhǔn)差分別為S1,S2,試比較S1與S2的大。ú槐赜(jì)算,只需直接寫出結(jié)果);
(3)規(guī)定成績大于等于75分為優(yōu)良,從這10名同學(xué)中隨機(jī)選取一男一女兩名同學(xué),求這兩名同學(xué)的國學(xué)素養(yǎng)測(cè)試成績均為優(yōu)良的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有7位歌手(1至7號(hào))參加一場(chǎng)歌唱比賽, 由550名大眾評(píng)委現(xiàn)場(chǎng)投票決定歌手名次, 根據(jù)年齡將大眾評(píng)委分為5組, 各組的人數(shù)如下:
組別 | A | B | C | D | E |
人數(shù) | 50 | 100 | 200 | 150 | 50 |
(Ⅰ) 為了調(diào)查大眾評(píng)委對(duì)7位歌手的支持狀況, 現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委, 其中從B組中抽取了6人. 請(qǐng)將其余各組抽取的人數(shù)填入下表.
組別 | A | B | C | D | E |
人數(shù) | 50 | 100 | 200 | 150 | 50 |
抽取人數(shù) | 6 |