已知圖象不間斷的函數(shù)f(x)是區(qū)間[a,b]上的單調(diào)函數(shù),且在區(qū)間(a,b)上存在零點(diǎn).如圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內(nèi)可以填寫的內(nèi)容有如下四個(gè)選擇:①f(a)f(m)<0;②f(a)f(m)>0;③f(b)f(m)<0;④f(b)f(m)>0其中能夠正確求出近似解的是


  1. A.
    ①③
  2. B.
    ②③
  3. C.
    ①④
  4. D.
    ②④
C
分析:利用二分法求方程近似值的步驟,得到滿足什么條件時(shí)將b賦值與m;得到判斷框中的條件.
解答:據(jù)二分法求方程近似解的步驟知
當(dāng)f(m)f(a)<0即f(m)f(b)>0時(shí),說(shuō)明根在區(qū)間(a,m)內(nèi),令b=m
當(dāng)f(m)f(b)<0即f(m)f(a)>0時(shí),說(shuō)明方程的根在區(qū)間(m,b)內(nèi),令a=m
由框圖得到當(dāng)滿足判斷框中的條件時(shí)將b=m
故判斷框內(nèi)的條件為f(m)f(a)<0或f(m)f(b)>0
故選C
點(diǎn)評(píng):本題考查由實(shí)際問(wèn)題何時(shí)將出現(xiàn)將b的值賦給m,即程序框圖中需要的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•沈陽(yáng)二模)已知圖象不間斷的函數(shù)f(x)是區(qū)間[a,b]上的單調(diào)函數(shù),且在區(qū)間(a,b)上存在零點(diǎn).如圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內(nèi)可以填寫的內(nèi)容有如下四個(gè)選擇:
①f(a)f(m)<0;②f(a)f(m)>0;
③f(b)f(m)<0;④f(b)f(m)>0
其中能夠正確求出近似解的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省吉林一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知圖象不間斷的函數(shù)f(x)是區(qū)間[a,b]上的單調(diào)函數(shù),且在區(qū)間(a,b)上存在零點(diǎn).如圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內(nèi)可以填寫的內(nèi)容有如下四個(gè)選擇:
①f(a)f(m)<0;②f(a)f(m)>0;
③f(b)f(m)<0;④f(b)f(m)>0
其中能夠正確求出近似解的是( )
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年黑龍江省高考數(shù)學(xué)仿真模擬試卷1(文科)(解析版) 題型:選擇題

已知圖象不間斷的函數(shù)f(x)是區(qū)間[a,b]上的單調(diào)函數(shù),且在區(qū)間(a,b)上存在零點(diǎn).如圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內(nèi)可以填寫的內(nèi)容有如下四個(gè)選擇:
①f(a)f(m)<0;②f(a)f(m)>0;
③f(b)f(m)<0;④f(b)f(m)>0
其中能夠正確求出近似解的是( )
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年吉林省高考數(shù)學(xué)仿真模擬試卷7(理科)(解析版) 題型:選擇題

已知圖象不間斷的函數(shù)f(x)是區(qū)間[a,b]上的單調(diào)函數(shù),且在區(qū)間(a,b)上存在零點(diǎn).如圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內(nèi)可以填寫的內(nèi)容有如下四個(gè)選擇:
①f(a)f(m)<0;②f(a)f(m)>0;
③f(b)f(m)<0;④f(b)f(m)>0
其中能夠正確求出近似解的是( )
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年?yáng)|北三省四市統(tǒng)一考試暨沈陽(yáng)市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知圖象不間斷的函數(shù)f(x)是區(qū)間[a,b]上的單調(diào)函數(shù),且在區(qū)間(a,b)上存在零點(diǎn).如圖是用二分法求方程f(x)=0近似解的程序框圖,判斷框內(nèi)可以填寫的內(nèi)容有如下四個(gè)選擇:
①f(a)f(m)<0;②f(a)f(m)>0;
③f(b)f(m)<0;④f(b)f(m)>0
其中能夠正確求出近似解的是( )
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案