(2009•東營一模)若
lim
x→2
x2+ax-2
x2-4
=
3
4
,則a的值為( 。
分析:
lim
x→2
x2+ax-2
x2-4
=
3
4
,知x=2是零因子,故22+2a-2=0,由此能求出a.
解答:解:∵
lim
x→2
x2+ax-2
x2-4
=
3
4
,
∴x=2是零因子,
∴22+2a-2=0,
解得a=-1.
故選B.
點評:本題考查極限的性質(zhì)及其運算,是基礎(chǔ)題.解題時要認真審題,注意極限的逆運算的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)已知函數(shù)f(x)=x3+ax2+bx+c在x=1與x=-
2
3
時,都取得極值.
(1)求a,b的值;
(2)若f(-1)=
3
2
,求f(x)的單調(diào)區(qū)間和極值;
(3)若對x∈[-1,2]都有f(x)<
3
c
恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)箱子中裝有6張卡片,分別寫有1到6這6個整數(shù).從箱子中任意取出一張卡片,記下它的讀數(shù)x,然后放回箱子,第二次再從箱子中取出一張卡片,記下它的讀數(shù)y,試求:
(Ⅰ)x+y是5的倍數(shù)的概率;
(Ⅱ)x-y是3的倍數(shù)的概率;
(Ⅲ)x,y中至少有一個5或6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)設(shè)命題P:函數(shù)f(x)=x+
a
x
(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)對有n(n≥4)個元素的總體{1,2,…,n}進行抽樣,先將總體分成兩個子總體{1,2,…,m}和{m+1,m+2,…,n}(m是給定的正整數(shù),且2≤m≤n-2),再從每個子總體中各隨機抽取2個元素組成樣本.用Pij表示元素i和j同時出現(xiàn)在樣本中的概率,則P1n=
4
m(n-m)
4
m(n-m)
; 所有Pij(1≤i<j≤n)的和等于
6
6

查看答案和解析>>

同步練習冊答案