【題目】某微信群主發(fā)60個隨機紅包(即每個人搶到的紅包中的錢數(shù)是隨機的,且每人只能搶一個),紅包被一搶而空,后據(jù)統(tǒng)計,60個紅包中的錢數(shù)(單位:元)分配如下頻率分布直方圖所示(其分組區(qū)間為,,,.

1)求頻率分布直方圖中的值及紅包錢數(shù)的平均值;

2)試估計該群中某成員搶到錢數(shù)不小于3元的概率;

3)若該群中成員甲、乙兩人都搶到4.5元紅包,現(xiàn)系統(tǒng)將從搶到4元及以上紅包的人中隨機抽取2人,求甲、乙至少有一人被選中的概率.

【答案】1,平均值為2.6520.353

【解析】

1)根據(jù)平率分布直方圖中所有頻率(矩形面積)之和為1即可求解;

2)可用1減去搶紅包的錢數(shù)小于3元的概率,可得答案;

3)先計算出搶紅包4元及以上對應的人數(shù),為6人,再結合列舉法寫出所有可能的事件,利用古典概型公式即可求解.

1)由題知,解得,

;

2)根據(jù)頻率分布直方圖,得:該群中搶紅包的錢數(shù)不小于3元的頻率是,估計該群中某成員搶到錢數(shù)不小于3元的概率是0.35;

3)該群中搶到錢數(shù)不小于4元的頻率為0.10,對應的人數(shù)是,記為1、23、4、甲、乙;

現(xiàn)從這6人中隨機抽取2人,基本事件數(shù)是12,13,14,1甲,1乙,23,24,2甲,2乙,34,3甲,3乙,4甲,4乙,甲乙共15種;

其中甲乙兩人至少有一人被選中的基本事件為1甲,1乙,2甲,2乙,3甲,3乙,4甲,4乙,甲乙共9種;

∴對應的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在正實數(shù),對于任意,都有,則稱函數(shù)上是有界函數(shù),下列函數(shù):

;②;③;④;

其中在上是有界函數(shù)的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其導函數(shù)的兩個零點為.

(I)求曲線在點處的切線方程;

(II)求函數(shù)的單調區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)試判斷函數(shù)上的單調性,并說明理由;

2)若是在區(qū)間上的單調函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點。

1)證明: 平面;

2)設 ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點.

(Ⅰ)求證:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;

(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別為橢圓的左、右焦點,點關于直線對稱的點Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點,且,則___.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對滿足的非空集合,有下列四個命題:

①“若任取,則”是必然事件; ②“若,則”是不可能事件;

③“若任取,則”是隨機事件; ④“若,則”是必然事件.

其中正確命題的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案