已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=x2-2x,若對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范圍.
解析 f′(x)=ax-(2a+1)+(x>0).
(1)由f′(1)=f′(3),解得a=.
(2)f′(x)=(x>0).
①當(dāng)a≤0時,x>0,ax-1<0,
在區(qū)間(0,2)上f′(x)>0;在區(qū)間(2,+∞)上f′(x)<0.
故f(x)的單調(diào)遞增區(qū)間(0,2),單調(diào)遞減區(qū)間是(2,+∞).
②當(dāng)0<a<時,>2,
在區(qū)間(0,2)和上f′(x)>0;在區(qū)間上f′(x)<0,故f(x)的單調(diào)遞增區(qū)間是(0,2)和(,+∞),
單調(diào)遞減區(qū)間是.
③當(dāng)a=時,f′(x)=,
故f(x)的單調(diào)遞增區(qū)間是(0,+∞).
④當(dāng)a>時,0<<2,
在區(qū)間和(2,+∞)上f′(x)>0;在區(qū)間上f′(x)<0,故f(x)的單調(diào)遞增區(qū)間是和(2,+∞),單調(diào)遞減區(qū)間是.
(3)由已知,在(0,2]上有f(x)max<g(x)max.
由已知,g(x)max=0,由(2)可知,
①當(dāng)a≤時,f(x)在(0,2]上單調(diào)遞增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2.
所以,-2a-2+2ln2<0,解得a>ln2-1.
故ln2-1<a≤.
②當(dāng)a>時,f(x)在上單調(diào)遞增,在上單調(diào)遞減,故f(x)max=f()=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2.
所以,-2-2lna<0,f(x)max<0.
綜上所述,a>ln2-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌市高一5月聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個實(shí)根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實(shí)數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省萊蕪市高三上學(xué)期10月測試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分l2分)
已知函數(shù)f(x)=a-
(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若f(x)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題
( (本小題滿分13分)
已知函數(shù)f(x)=(a-1)x+aln(x-2),(a<1).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一期末考試文科數(shù)學(xué) 題型:解答題
(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函數(shù)的定義域 (2)討論函數(shù)f(X)的單調(diào)性
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com