【題目】求下列不等式的解集:
(1)
(2)
(3)
(4)
(5)
(6)
【答案】(1);(2);(3);(4);(5);(6)
【解析】
(1)根據(jù)一元二次不等式的解法,求得不等式的解集.
(2)根據(jù)一元二次不等式的解法,求得不等式的解集.
(3)根據(jù)一元二次不等式的解法,求得不等式的解集.
(4)根據(jù)一元二次不等式的解法,求得不等式的解集.
(5)根據(jù)一元二次不等式的解法,求得不等式的解集.
(6)根據(jù)一元二次不等式的解法,求得不等式的解集.
(1)∵,∴原不等式可化為,即.
兩邊開平方得,從而可知或.即或.
∴不等式的解集為.
(2)一元二次不等式,對應的一元二次方程的兩個根為,所以原不等式的解集為:.
(3)由于所以原不等的解集為.
(4)依題意,所以原不等式的解集為.
(5)不等式,即,對應一元二次方程的兩個根為,所以原不等式的解集為.
(6)由于,所以原不等式的解集為.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓C過定點F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點,且線段PQ的中心點坐標(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內,沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品,現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內經(jīng)銷該商品獲得的利潤.
(Ⅰ)視分布在各區(qū)間內的頻率為相應的概率,求;
(Ⅱ)將表示為的函數(shù),求出該函數(shù)表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值)代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如,則取的概率等于市場需求量落入的頻率),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形中, , , 是的中點,以為折痕將向上折起, 變?yōu)?/span>,且平面平面.
(Ⅰ)求證: ;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】未來創(chuàng)造業(yè)對零件的精度要求越來越高.打印通常是采用數(shù)字技術材料打印機來實現(xiàn)的,常在模具制造、工業(yè)設計等領域被用于制造模型,后逐漸用于一些產(chǎn)品的直接制造,已經(jīng)有使用這種技術打印而成的零部件.該技術應用十分廣泛,可以預計在未來會有發(fā)展空間.某制造企業(yè)向高校打印實驗團隊租用一臺打印設備,用于打印一批對內徑有較高精度要求的零件.該團隊在實驗室打印出了一批這樣的零件,從中隨機抽取個零件,度量其內徑的莖葉圖如圖(單位:).
(1)計算平均值與標準差;
(2)假設這臺打印設備打印出品的零件內徑服從正態(tài)分布,該團隊到工廠安裝調試后,試打了個零件,度量其內徑分別為(單位:):、、、、,試問此打印設備是否需要進一步調試?為什么?
參考數(shù)據(jù):,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.
①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com