【題目】某森林出現(xiàn)火災(zāi),火勢正以每分鐘的速度順風(fēng)蔓延,消防站接到警報立即派消防隊員前去,在火災(zāi)發(fā)生后分鐘到達救火現(xiàn)場,已知消防隊員在現(xiàn)場平均每人每分鐘滅火,所消耗的滅火材料、勞務(wù)津貼等費用為每人每分鐘125元,另附加每次救火所損耗的車輛、器械和裝備等費用平均每人100元,而燒毀一平方米森林損失費為60元.
(1)設(shè)派名消防隊員前去救火,用分鐘將火撲滅,試建立與的函數(shù)關(guān)系式;
(2)問應(yīng)該派多少名消防隊員前去救火,才能使總損失最少?
(總損失=滅火材料、勞務(wù)津貼等費用+車輛、器械和裝備費用+森林損失費)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連接而成,圓柱與圓錐的底面半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為,已知圓柱底面的造價為元,圓柱側(cè)面造價為元,圓錐側(cè)面造價為元.
(1)將圓柱的高表示為底面半徑的函數(shù),并求出定義域;
(2)當容器造價最低時,圓柱的底面半徑為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,選項正確的是( )
A. 在回歸直線中,變量時,變量的值一定是15
B. 兩個變量相關(guān)性越強,則相關(guān)系數(shù)就越接近于1
C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān)
D. 若某商品的銷售量(件)與銷售價格(元/件)存在線性回歸方程為,當銷售價格為10元時,銷售量為100件左右
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)點P在直線l:2x-4y+3=0上,過點P作圓C的切線,切點記為M,求使|PM|最小的點P的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 y = x3 + x-2 在點 P0 處的切線平行于直線
4x-y-1=0,且點 P0 在第三象限,
⑴求P0的坐標;
⑵若直線, 且 l 也過切點P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)和偶函數(shù)滿足:,下列結(jié)論正確的有( )
A.,且
B.,總有
C.,總有
D.,使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>分(含分)以上的3人與成績?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:
分數(shù)段 | ||||
頻率 | 0.108 | 0.133 | 0.161 | 0.183 |
分數(shù)段 | ||||
頻率 | 0.193 | 0.154 | 0.061 | 0.007 |
(Ⅰ)試估計該次高考成績在內(nèi)文科考生的平均分(精確到);
(Ⅱ)一考生填報志愿后,得知另外有4名同分數(shù)考生也填報了該志愿.若該志愿計劃錄取3人,并在同分數(shù)考生中隨機錄取,求該考生不被該志愿錄取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求出函數(shù)的定義域;
(2)若當時,在上恒正,求出的取值范圍;
(3)若函數(shù)在上單調(diào)遞增,求出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com