【題目】某森林出現(xiàn)火災(zāi),火勢正以每分鐘的速度順風(fēng)蔓延,消防站接到警報立即派消防隊員前去,在火災(zāi)發(fā)生后分鐘到達救火現(xiàn)場,已知消防隊員在現(xiàn)場平均每人每分鐘滅火,所消耗的滅火材料、勞務(wù)津貼等費用為每人每分鐘125元,另附加每次救火所損耗的車輛、器械和裝備等費用平均每人100元,而燒毀一平方米森林損失費為60元.

(1)設(shè)派名消防隊員前去救火,用分鐘將火撲滅,試建立的函數(shù)關(guān)系式;

(2)問應(yīng)該派多少名消防隊員前去救火,才能使總損失最少?

(總損失=滅火材料、勞務(wù)津貼等費用+車輛、器械和裝備費用+森林損失費)

【答案】(1);(2).

【解析】

試題(1)設(shè)派名消防員前去救火,用分鐘將火撲滅,總損失為元,則;(2)總損失為滅火材料、勞務(wù)津貼|車輛、器械、裝備費與森林損失費的總和,得出,利用基本不等式或?qū)?shù)求最小值.

解:(1).

(2)設(shè)總損失為,則總損失=滅火材料、勞務(wù)津貼+車輛、器械和裝備費+森林損失費,.當且僅當,即時,有最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連接而成,圓柱與圓錐的底面半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為,已知圓柱底面的造價為,圓柱側(cè)面造價為,圓錐側(cè)面造價為

(1)將圓柱的高表示為底面半徑的函數(shù),并求出定義域;

(2)當容器造價最低時,圓柱的底面半徑為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,選項正確的是(

A. 在回歸直線中,變量時,變量的值一定是15

B. 兩個變量相關(guān)性越強,則相關(guān)系數(shù)就越接近于1

C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān)

D. 若某商品的銷售量(件)與銷售價格(元/件)存在線性回歸方程為,當銷售價格為10元時,銷售量為100件左右

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x-4y+3=0.

1若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.

2點P在直線l:2x-4y+3=0上,過點P作圓C的切線,切點記為M,求使|PM|最小的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當b=4時,求的極值;

(2)若在區(qū)間上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 y = x3 + x2 在點 P0 處的切線平行于直線

4xy1=0,且點 P0 在第三象限,

P0的坐標;

若直線, l 也過切點P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的奇函數(shù)和偶函數(shù)滿足:,下列結(jié)論正確的有(

A.,且

B.,總有

C.,總有

D.,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>分(含分)以上的3人與成績?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:

分數(shù)段

頻率

0.108

0.133

0.161

0.183

分數(shù)段

頻率

0.193

0.154

0.061

0.007

(Ⅰ)試估計該次高考成績在內(nèi)文科考生的平均分(精確到);

(Ⅱ)一考生填報志愿后,得知另外有4名同分數(shù)考生也填報了該志愿.若該志愿計劃錄取3人,并在同分數(shù)考生中隨機錄取,求該考生不被該志愿錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求出函數(shù)的定義域;

2)若當時,上恒正,求出的取值范圍;

3)若函數(shù)上單調(diào)遞增,求出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案