已知雙曲線C1: -=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為(  )

(A)x2=y (B)x2=y

(C)x2=8y        (D)x2=16y


D

解析:由e==2得4==1+,

=3.

∴雙曲線的漸近線方程為y=±x,拋物線x2=2py的焦點是(0, ),

它到直線y=±x的距離d=2==,

∴p=8.

∴拋物線方程為x2=16y.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


雙曲線2x2-y2=8的實軸長是(  )

(A)2        (B)2   (C)4    (D)4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖所示,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>b>0)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(  )

(A) +=1  (B) +=1

(C) +=1  (D) +=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線C1:x2+by=b2經(jīng)過橢圓C2: +=1(a>b>0)的兩個焦點.

(1)求橢圓C2的離心率;

(2)設(shè)點Q(3,b),又M,N為C1與C2不在y軸上的兩個交點,若△QMN的重心在拋物線C1上,求C1和C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知拋物線y2=8x的準(zhǔn)線過雙曲線-=1(a>0,b>0)的一個焦點,且雙曲線的離心率為2,則該雙曲線的方程為        . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖所示,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個點.

(1)求r的取值范圍;

(2)當(dāng)四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


某班共有學(xué)生54人,學(xué)號分別為1~54號,現(xiàn)根據(jù)學(xué)生的學(xué)號,用系統(tǒng)抽樣的方法,抽取一個容量為4的樣本,已知3號、29號、42號的同學(xué)在樣本中,那么樣本中還有一個同學(xué)的學(xué)號是(  )

A.10  B.16  C.53  D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


口袋中有100個大小相同的紅球、白球、黑球,其中紅球45個,從口袋中摸出一個球,摸出白球的概率為0.23,則摸出黑球的概率為(  )

A.0.45                                 B.0.67 

C.0.64                                 D.0.32

查看答案和解析>>

同步練習(xí)冊答案