已知數(shù)列{an}滿足a1=1,點(an•an+1)在直線y=2x+1上,數(shù)列{bn}滿足b1=a1,
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2).

(1)求bn+1an-(bn+1)an+1的值;
(2)求證:(1+b1)(1+b2)•…•(1+bn)<
10
3
b1b2•…•bn(n∈Nh*).
分析:(1)把點(an•an+1)代入直線方程求得數(shù)列的遞推式,整理得an+1+1=2(an+1),判斷出{an+1}是以2為首項,2為公比的等比數(shù)列,進而根據(jù)等比數(shù)列的通項公式求得an.同時根據(jù)
bn
an
=
1
a1
+
1
a2
+••+
1
an-1
(n≥2)
求得
bn+1
an+1
=
1
a1
+
1
a2
+••+
1
an-1
+
1
an
,進而判斷出
bn+1
an+1
=
bn
an
+
1
an
整理得bn+1an-(bn+1)an+1=0,進而看當n=1時b2a1-(b1+1)a2=-3.,綜合可得答案.
(2)根據(jù)(1)可知
bn+1
bn+1
=
an
an+1
(n≥2)
進而求得(1+
1
b1
)(1+
1
b2
)••(1+
1
bn
)
=2(
1
a1
+
1
a2
+…+
1
an
)
,先看當k≥2時求得
1
ak
-
1
2k-1
=
2k+1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
,進而可知(1+
1
b1
)(1+
1
b2
)••(1+bn)<
10
3
b1b2••bn.
進而再看n=1時不等式也成立.原式得證.
解答:解:(1)∵點(an,an+1)在直線y=2x+1上,∴an+1=2an+1∴an+1+1=2(an+1),
即(an+1)是以2為首項,2為公比的等比數(shù)列∴an=2n-1
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2)

bn+1
an+1
=
1
a1
+
1
a2
+…+
1
an-1
+
1
an

bn+1
an+1
=
bn
an
+
1
an

∴bn+1an-(bn+1)an+1=0(n≥2)
當n=1時,b1=a1=1,b2=a2=3
則b2a1-(b1+1)a2=-3.

(2)由(1)知
bn+1
bn+1
=
an
an+1
(n≥2),b2=a2

(1+
1
b1
)(1+
1
b2
)••(1+
1
bn
)=
b1+1
b1
b2+1
b2
••
bn+1
bn
=
1
b1
b1+1
b2
b2+1
b3
••
bn-1
bn
bn+1
bn+1
bn+1=
1
b1
b1+1
b2
a2
a3
a3
a4
an-1
an
an
an+1
bn+1=2•
bn+1
an+1
=2(
1
a1
+
1
a2
+…+
1
an
)

∵k≥2時,
1
ak
-
1
2k-1
=
2k+1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
=2(
1
2k-1
-
1
2k+1-1
)

1
a1
+
1
a2
+…+
1
an
=1+
1
3
+••+
1
2n-1
<1+2[(
1
22-1
-
1
23-1
)+
••+(
1
2n-1
-
1
2n+1-1
)]=1+2(
1
3
-
1
2n+1-1
)<
5
3

(1+
1
b1
)(1+
1
b2
)••(1+bn)<
10
3
b1b2••bn.

另證:當n≥2時2n-2≥1(僅當n=2取等號)
∴2n-1≥3•2n-2,即
1
an
-
1
2n-1
1
3
1
2n-2
(n≥2)

∴當n≥2時,
1
a1
+
1
a2
+…+
1
an
≤1+
1
3
(1+
1
2
+…+
1
2n-2
)=1+
1
3
1-
1
2n-1
1-
1
2
=
5
3
-
1
2n-2
5
3

而n=1顯然成立
(1+
1
b1
)(1+
1
b2
)••(1+
1
bn
)<
10
3

(1+b1)(1+b2)••(1+bn)<
10
3
b1b2••bn.
點評:本題主要考查了不等式和數(shù)列的綜合,數(shù)列通項公式的確定,考查了學生綜合運用不等式和數(shù)列知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn;
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案