如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,
M為AP的中點.
(Ⅰ)求證:DM∥平面PCB;
(Ⅱ)求直線AD與PB所成角;
(Ⅲ)求三棱錐P-MBD的體積.
(Ⅰ)證明見解析(Ⅱ)
(Ⅲ)
(I)取PB的中點F,聯(lián)結MF、CF,∵M、F分別為PA、PB的中點.
∴MF∥AB,且MF=
AB.
∵四邊形ABCD是直角梯形,AB∥CD且AB=2CD,
∴MF∥CD且MF=CD.
∴四邊形CDFM是平行四邊形.
∴DM∥CF.
∵CF平面PCB,
∴DM∥平面PCB. 4分
(Ⅱ)取AD的中點G,連結PG、GB、BD.
∵PA=PD, ∴PG⊥AD.
∵AB=AD,且∠DAB=60°,
∴△ABD是正三角形,BG⊥AD.
∴AD⊥平面PGB.
∴AD⊥PB. 8分
(Ⅲ)
VP-MBD=VB-PMD 10分
VB-PMD =
×
×
×
×
=
14分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
矩形ABCD與矩形ABEF的公共邊為AB,且平面ABCD
平面ABEF,如圖所示,F(xiàn)D
, AD=1, EF=
.
(Ⅰ)證明:AE
平面FCB;
(Ⅱ)求異面直線BD與AE所成角的余弦值
(Ⅲ)若M是棱AB的中點,在線段FD上是否存在一點N,使得MN∥平面FCB?
證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知四邊形
為菱形,
,兩個正三棱錐
(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側棱長都相等,點
分別在
上,且
.
(Ⅰ)求證:
;
(Ⅱ)求平面
與底面
所成銳二面角的平面角的正切值;
(Ⅲ)求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,直四棱柱ABCD-A
1B
1C
1D
1的底面是
梯形,AB∥CD,AD⊥DC,CD=2,DD
1=AB=1,P、Q分別是CC
1、C
1D
1的中點。點P到直線
AD
1的距離為
⑴求證:AC∥平面BPQ
⑵求二面角B-PQ-D的大小
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖,在梯形
中,
是
的中點,將
沿
折起,使點
到點
的位置,使二面角
的大小為
(1)求證:
;
(2)求直線
與平面
所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在棱長為1的正方體ABCD—A
1B
1C
1D
1中,點E是棱BC的中點,點F是棱
CD上的動點.
(I)試確定點F的位置,使得D
1E⊥平面AB
1F;
(II)當
⊥平面AB
1F時,求二面角C
1—EF—A的大。ńY果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知長方體
直線
與平面
所成的角為
,
垂直
于
,
為
的中點.
(1)求異面直線
與
所成的角;
(2)求平面
與平面
所成的二面角;
(3)求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知四棱錐
P—ABCD的底面
ABCD為等腰梯形,
AB//CD,AC⊥DB,AC與
BD相交于點
O,且頂點P在底面上的射影恰為
O點,又
BO=2,PO=,
PB⊥PD.(Ⅰ)求異面直線
PD與
BC所成角的余弦值;
(Ⅱ)求二面角
P—AB—C的大小;
(Ⅲ)設點
M在棱
PC上,且
,問
為何值時,
PC⊥平面
BMD.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
水平桌面兒上放置著一個容積為V的密閉長方體玻璃容器ABCD—A
1B
1C
1D
1,其中裝有
V的水。
(1)把容器一端慢慢提起,使容器的一條棱AD保持在桌面上,這個過程中水的形狀始終是柱體;(2)在(1)中的運動過程中,水面始終是矩形;(3)把容器提離桌面,隨意轉動,水面始終過長方體內的一個定點;(4)在(3)中水與容器的接觸面積始終不變。
以上說法正確的是_____.
查看答案和解析>>