思路解析:曲線上一點(diǎn)P到焦點(diǎn)的距離,往往考慮第二定義或焦半徑.
解:由雙曲線的第二定義知=e,其d為P到右準(zhǔn)線的距離,右準(zhǔn)線l:x=,e=,∴|PF|=ed=d,|PA|+|PF|=|PA|+·d=|PA|+d,∴求|PA|+|PF|的最小值問題轉(zhuǎn)化為:在雙曲線上求一點(diǎn)P,使P到A的距離與到右準(zhǔn)線的距離之和最小.如圖,由平面幾何的知識(shí)可知,由直線外一點(diǎn)向該直線所引的線段中,垂線段最短,從而,過點(diǎn)A向右準(zhǔn)線l:x=作垂線AB,交雙曲線于P點(diǎn),此時(shí)|PA|+d最小,即|PA|+|PF|最小,最小值為垂線段的長(zhǎng),易求得|AB|=,故|PA|+|PF|的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為( )
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練19練習(xí)卷(解析版) 題型:選擇題
已知雙曲線-=1(a>0,b>0),過其右焦點(diǎn)F且垂直于實(shí)軸的直線與雙曲線交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn).若OM⊥ON,則雙曲線的離心率為( )
(A) (B)
(C) (D)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com