如圖,的切線,過圓心, 的直徑,相交于、兩點,連結、. (1) 求證:;
(2) 求證:.

(1)(2)詳見解析.

解析試題分析:本小題主要考查平面幾何的證明及其運算,具體涉及到共圓圖形的判斷和圓的性質以及兩個三角形全等的判斷和應用等有關知識內容.本小題針對考生的平面幾何思想與數(shù)形結合思想作出考查.(1)利用弦切角進行轉化證明;(2)借助三角形相似和切割線定理進行證明.
試題解析:(1) 由是圓的切線,因此弦切角的大小等于夾弧所對的圓周角,在等腰中,,可得,所以.      (5分)
(2) 由相似可知,,由切割線定理可知,,則,又,可得.                     (10分)
考點:平面幾何的證明及其運算

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線AB經過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連結EC、CD.

(Ⅰ)求證:直線AB是⊙O的切線;
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過M點作⊙O的切線AM,C是AM的中點,AN交⊙O于B點,若四邊形BCON是平行四邊形;

(Ⅰ)求AM的長;
(Ⅱ)求sin∠ANC. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形的外接圓為⊙,是⊙的切線,的延長線與相交于點,
求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知切⊙于點E,割線PBA交⊙于A、B兩點,∠APE的平分線和AE、BE分別交于點C、D.

求證:
(Ⅰ);
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點A的極坐標為,直線的極坐標方程為,且點A在直線上。
(Ⅰ)求的值及直線的直角坐標方程;
(Ⅱ)圓C的參數(shù)方程為,試判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,為圓上一點,,垂足為,點為圓上任一點,交于點,于點

求證:(1);(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,PA為圓的切線,A為切點,PBC是過點O的割線,PA=10,PB=5,的平分線與BC和圓分別交于點D和E。

(1)求證:;
(2)求AD·AE的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)從⊙外一點引圓的兩條切線,及一條割線、為切點.求證:

查看答案和解析>>

同步練習冊答案