【題目】已知的展開(kāi)式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等.

(1)求的值;

(2)求展開(kāi)式中所有二項(xiàng)式系數(shù)的和;

(3)求展開(kāi)式中所有的有理項(xiàng).

【答案】(1)5;(2)32;(3)見(jiàn)解析

【解析】

(1)根據(jù)展開(kāi)式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等,列出方程求出n的值;
(2)利用展開(kāi)式中所有二項(xiàng)式系數(shù)的和為2n,即可求出結(jié)果;
(3)根據(jù)二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求出展開(kāi)式中所有的有理項(xiàng)

二項(xiàng)式展開(kāi)式的通項(xiàng)公式為

r=0,1,2,…,n);

1)根據(jù)展開(kāi)式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等,得 解得n=5;

2)展開(kāi)式中所有二項(xiàng)式系數(shù)的和為

3)二項(xiàng)式展開(kāi)式的通項(xiàng)公式為r=01,2,5;

當(dāng)r=0,2,4時(shí),對(duì)應(yīng)項(xiàng)是有理項(xiàng),

所以展開(kāi)式中所有的有理項(xiàng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知標(biāo)準(zhǔn)方程下的橢圓的焦點(diǎn)在軸上,且經(jīng)過(guò)點(diǎn)它的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合.橢圓的上頂點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),連接、,記直線的斜率分別為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的角所對(duì)的邊份別為,且

1求角的大;

2,求的周長(zhǎng)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過(guò),,,三點(diǎn),是線段上的動(dòng)點(diǎn),是過(guò)點(diǎn)且互相垂直的兩條直線,其中軸于點(diǎn)交圓、兩點(diǎn).

(1)若,求直線的方程;

(2)若是使恒成立的最小正整數(shù),求三角形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若存在單調(diào)遞減區(qū)間,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩陣A的逆矩陣A1=( ).
(1)求矩陣A;
(2)求矩陣A1的特征值以及屬于每個(gè)特征值的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),圓C的參數(shù)方程為 (θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的有______

①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;

②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大

③用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.

④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若方程上有兩個(gè)不等實(shí)根,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案