【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(Ⅰ)因?yàn)?/span>DE⊥平面ABCD,所以DE⊥AC.因?yàn)?/span>ABCD是正方形,所以AC⊥BD,從而AC⊥平面BDE;(Ⅱ)建立空間直角坐標(biāo)系D-xyz,分別求出平面BEF的法向量為和平面BDE的法向量,利用向量法能求出二面角的余弦值
試題解析:(1)證明:因?yàn)?/span>DE⊥平面ABCD,AC平面ABCD,所以DE⊥AC. 因?yàn)?/span>ABCD是正方形,所以AC⊥BD.
又BD,DE相交且都在平面BDE內(nèi),從而AC⊥平面BDE.
(2)因?yàn)?/span>DA,DC,DE兩兩垂直,所以建立空間直角坐標(biāo)系Dxyz,如圖所示.
因?yàn)?/span>DE⊥平面ABCD,所以BE與平面ABCD所成角就是∠DBE.已知BE與平面ABCD所成角為60°,所以∠DBE=60°,所以
由AD=3可知DE=3,AF=.
由A(3,0,0),F(3,0, ),E(0,0,3),B(3,3,0),C(0,3,0),
得=(0,-3, ),=(3,0,-2).設(shè)平面BEF的法向量為n=(x,y,z),
則即令z=,則n=(4,2, ).
因?yàn)?/span>AC⊥平面BDE,所以為平面BDE的法向量m=(3,-3,0),
所以cos〈n,m〉==.
因?yàn)槎娼菫殇J角,所以二面角FBED的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+1|+|x+1|.
(Ⅰ)求不等式f(x)≤8的解集;
(Ⅱ)若不等式f(x)>|a-2|對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)零點(diǎn),求的取值范圍;
(2)在(1)的條件下,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高三文科班學(xué)生參加了數(shù)學(xué)與地理水平測(cè)試,學(xué)校從測(cè)試合格的學(xué)生中隨機(jī)抽取100人的成績(jī)進(jìn)行統(tǒng)計(jì)分析.抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>
成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí),橫向、縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?0+18+4=42人.
(1)若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率為30%,求a,b的值;
(2)若樣本中,求在地理成績(jī)及格的學(xué)生中,數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856263)
已知拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)N,過(guò)點(diǎn)N作圓M:(x-2)2+y2=1的兩條切線(xiàn),切點(diǎn)為P、Q,且|PQ|=.
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)過(guò)拋物線(xiàn)的焦點(diǎn)F作斜率為k1的直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AM,BM并延長(zhǎng)分別交拋物線(xiàn)于C、D兩點(diǎn),設(shè)直線(xiàn)CD的斜率為k2,問(wèn)是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性;
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年1月,某國(guó)宣布成功進(jìn)行氫彈試驗(yàn)后,A,B,C,D四國(guó)領(lǐng)導(dǎo)人及聯(lián)合國(guó)主席紛紛表示譴責(zé),就此,某電視臺(tái)特別邀請(qǐng)一軍事專(zhuān)家對(duì)這一事件進(jìn)行評(píng)論,若該軍事專(zhuān)家計(jì)劃從A,B,C,D四國(guó)及聯(lián)合國(guó)主席這5個(gè)領(lǐng)導(dǎo)人中任選2人的發(fā)言態(tài)度進(jìn)行評(píng)論,那么,他評(píng)論的這2人中至少包括A、B一國(guó)領(lǐng)導(dǎo)人的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值為______元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com