【題目】如圖,正方形和四邊形所在的平面互相垂直. ,

)求證: 平面

)求證: 平面

)在直線上是否存在點(diǎn),使得平面?并說明理由.

【答案】(1)見解析;(2) 見解析(3)不存在

【解析】)設(shè)交于點(diǎn),

, ,

四邊形為平行四邊形,

,

平面 平面,

平面

)連接,

, ,

平行四邊形為菱形,

四邊形為正方形,

,

又平面平面,平面平面,

平面,

,

,

平面

)直線上是否存在點(diǎn)。理由如下。

為原點(diǎn), , , 分別為 , 軸,建立如圖所示的空間直角坐標(biāo)系,

, , ,

, , ,

設(shè)平面一個法向量為,

,

,,

設(shè),,

平面,則有,

,即平行不會成立,

不存在點(diǎn)使得平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(nèi)(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內(nèi)該廠可獲利分別為10,30,2010(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取200件測量它們的直徑,得到如圖所示的頻率分布直方圖.

1的值,并估計該廠生產(chǎn)一件產(chǎn)品的平均利潤;

2現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機(jī)抽取一個容量為5的樣本,從樣本中隨機(jī)抽取兩件產(chǎn)品進(jìn)行檢測,求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的槪率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國在超級計算機(jī)方面發(fā)展迅速,躋身國際先進(jìn)水平國家,預(yù)報天氣的準(zhǔn)確度也大大提高,天氣預(yù)報說今后的三天中,每一天下雨的概率都是 ,我們可以通過隨機(jī)模擬的方法估計概率.我們先產(chǎn)生組隨機(jī)數(shù)

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

在這組數(shù)中,用表示下雨,表示不下雨,那么今后的三天中都下雨的概率近似為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知兩點(diǎn)、軸的正半軸上,點(diǎn)軸的正半軸上.若,

)求向量,夾角的正切值.

)問點(diǎn)在什么位置時,向量,夾角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半徑小于的圓經(jīng)過點(diǎn),圓心在直線上,并且與直線相交所得的弦長為

)求圓的方程.

已知點(diǎn),動點(diǎn)到圓的切線長等于到的距離,求的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )

A. 若兩條直線和同一個平面所成的角相等,則這兩條直線平行

B. 若一個平面內(nèi)有三個點(diǎn)到另一個平面的距離相等,則這兩個平面平行

C. 若兩個平面都垂直于第三個平面,則這兩個平面平行

D. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩門高射炮同時向一敵機(jī)開炮,已知甲擊中敵機(jī)的概率為0.6,乙擊中敵機(jī)的概率為0.8,敵機(jī)被擊中的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)yf(x)為區(qū)間[0,1]上的連續(xù)函數(shù),且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計算積分.先產(chǎn)生兩組(每組N)區(qū)間[0,1]上的均勻隨機(jī)數(shù)x1x2,xNy1,y2,,yN,由此得到N個點(diǎn)(xi,yi)(i1,2,N).再數(shù)出其中滿足yi≤f(xi)(i1,2,,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得積分的近似值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .

1)數(shù)列的通項公式;

2)設(shè),求數(shù)列項和.

查看答案和解析>>

同步練習(xí)冊答案