若曲線(xiàn)y=
ex-1,x≤1
1
1-x
,x>1
,與直線(xiàn)y=kx-1有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(3-2
2
,3+2
2
B、(0,3-2
2
C、(-∞,0)∪(0,3-2
2
D、(-∞,3-2
2
考點(diǎn):分段函數(shù)的應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出曲線(xiàn)y=
ex-1,x≤1
1
1-x
,x>1
的圖象如圖:
直線(xiàn)y=kx-1過(guò)定點(diǎn)(0,-1),
當(dāng)k=0時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn),不滿(mǎn)足條件,
當(dāng)k<0時(shí),兩個(gè)函數(shù)有2個(gè)交點(diǎn),滿(mǎn)足條件,
當(dāng)k>0時(shí),直線(xiàn)y=kx-1與y=
1
1-x
在x>1相切時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn),此時(shí)
1
1-x
=kx-1,即kx2+(1+k)x+2=0,
判別式△=(1+k)2-8k=0,解得k2-6k+1=0,
解得k=
6+
36-4
2
=
6+4
2
2
=3+2
2

或k=
6-
36-4
2
=
6-4
2
2
=3-2
2
(舍去),
則此時(shí)滿(mǎn)足0<k<3+2
2

綜上滿(mǎn)足條件的k的取值范圍是(-∞,0)∪(0,3-2
2
),
故選:C
點(diǎn)評(píng):本題主要考查函數(shù)與方程的應(yīng)用,利用數(shù)形結(jié)合以及分段函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=|lgx|-(
1
2
x的零點(diǎn)個(gè)數(shù)為( 。
A、3B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(-3,4)與
b
=(6,x)共線(xiàn),則x=(  )
A、8
B、-8
C、
9
2
D、-
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,將△ABD沿對(duì)角線(xiàn)BD折起.設(shè)折起后點(diǎn)A的位置為A′,并且平面A′BD⊥平面BCD.給出下面四個(gè)命題:
①A′D⊥BC;
②三棱錐A′-BCD的體積為
2
2

③CD⊥平面A′BD;
④平面A′BC⊥平面A′DC.
其中正確命題的序號(hào)是(  )
A、①②B、③④C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果25,x,y,z,1成等比數(shù)列,那么( 。
A、y=5,xz=25
B、y=-5,xz=25
C、y=5,xz=-25
D、y=-5,xz=-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐的底面半徑為1,側(cè)面展開(kāi)圖是一個(gè)半圓,則此圓錐的表面積為(  )
A、6π
B、5π
C、3π
D、
3
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,a2=p-1(p為常數(shù),|p|<1,p≠0),當(dāng)n≥2時(shí),{an}是以p為公比的等比數(shù)列,{an}的前n項(xiàng)和Sn=a1+a2+…+an(n≥1)
(1)試問(wèn)S1,S2,…,Sn能否構(gòu)成等差數(shù)列或等比數(shù)列?
(2)設(shè)Wn=a1S1+a2S2+…+anSn,證明
lim
n→∞
Wn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面AA1C1C,∠BAA1=90°,∠CAA1=120°,AB=AC=AA1=2,D是棱CC1的中心點(diǎn).
(Ⅰ)求證:AD⊥A1B;
(Ⅱ)求二面角D-A1B-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元),有如下的統(tǒng)計(jì)資料:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
若由資料知道y對(duì)x呈線(xiàn)性相關(guān)關(guān)系.附:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

試求:
(1)線(xiàn)性回歸方程
y
=a+bx的回歸系數(shù).
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案