【題目】已知命題 “存在”,命題:“曲線表示焦點在軸上的橢圓”,命題 “曲線表示雙曲線”
(1)若“且”是真命題,求實數(shù)的取值范圍;
(2)若是的必要不充分條件,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項公式;
(3)設cn=n(3﹣bn),求數(shù)列{cn}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2acosB=2c﹣b,若O是△ABC外接圓的圓心,且 ,則m= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,若將f(x)的圖象上所有點向右平移 個單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)增區(qū)間為( )
A. ,k∈Z
B. ,k∈Z
C. ,k∈Z
D. ,k∈Z
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的空間幾何體中,四邊形是邊長為2的正方形, 平面, , , , .
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知梯形ABCD是直角梯形,按照斜二測畫法畫出它的直觀圖A′B′C′D′(如圖所示),其中A′D′=2,B′C′=4,A′B′=1,則直角梯形DC邊的長度是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校的特長班有50名學生,其中有體育生20名,藝術(shù)生30名,在學校組織的一次體檢中,該班所有學生進行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五組,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.
(Ⅰ)求的值,并求這50名同學心率的平均值;
(Ⅱ)因為學習專業(yè)的原因,體育生常年進行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進行系統(tǒng)的身體鍛煉,若從第一組和第二組的學生中隨機抽取一名,該學生是體育生的概率為0.8,請將下面的列聯(lián)表補充完整,并判斷是否有99.5%的把握認為心率小于60次/分與常年進行系統(tǒng)的身體鍛煉有關(guān)?說明你的理由.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
心率小于60次/分 | 心率不小于60次/分 | 合計 | |
體育生 | 20 | ||
藝術(shù)生 | 30 | ||
合計 | 50 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是矩形的四棱錐PABCD中,PA⊥平面ABCD,PA = AB = 2,BC = 4, E是PD的中點,
(1)求證: 平面EAC;
(2)求證:平面PDC⊥平面PAD;
(3)求多面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com