精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
log2(1-x)+1,-1≤x<k
x2-3x+2,k≤x≤a
,若存在k使得函數f(x)的值域是[0,2],則實數a的取值范圍是
 
考點:分段函數的應用
專題:計算題,數形結合,函數的性質及應用
分析:分別作出函數y=log2(1-x)+1,(x>-1)和y=x2-3x+2的圖象,觀察函數值在[0,2]內的圖象,討論最小值和最大值的情況,對a討論,a=1,a>1,a<1,以及a<
1
2
,a
1
2
,的情況,即可得到結論.
解答: 解:分別作出函數y=log2(1-x)+1,(x>-1)
和y=x2-3x+2的圖象,
由于函數f(x)的值域是[0,2],則觀察函數值在[0,2]內的圖象,
由于f(-1)=log22+1=2,f(0)=02-3×0+2=2,
顯然a=0不成立,a=1成立,a>1不成立,
又f(
1
2
)=log2(1-
1
2
)
+1=0,若a<
1
2
,則最小值0取不到,
則a
1
2
,
綜上可得,
1
2
≤a≤1

即有實數a的取值范圍是[
1
2
,1].
故答案為:[
1
2
,1].
點評:本題考查已知函數的值域,求參數的范圍,考查數形結合的思想方法,注意觀察和分析,考查運算能力,屬于中檔題和易錯題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知y=f(x)為R上的奇函數,當x>0時f(x)=x3
x+1
,則當x<0時,f(x)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=ln|x|-
1
2
x2的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sinα+sinβ=
1
3
,求y=sinα-cos2β的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b>0,ab=a+b+3,求ab的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

偶函數f(x)滿足f(1)=0,且當x∈(0,+∞),f (x)是減函數,求不等式f(logax)<0解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的前n項積為Tn,Tn=2
n(n+1)
2
(n∈N*).
(1)求數列{an}的通項公式;
(2)設bn=anlog2an,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

2+2cosx
≤0中x的取值范圍的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=a+bi(a、b∈R),若存在實數t使a-bi=
2+4i
t
-3ati成立.
(1)求證:2a+b為定值;
(2)若|z-2|<a,求|z|的取值范圍.

查看答案和解析>>

同步練習冊答案