橢圓
x2
a2
+
y2
b2
=1
的焦點(diǎn)坐標(biāo)為F1(-
3
,0),F2(
3
,0)
短軸的一個(gè)端點(diǎn)為B,若|BF1|=2.
(1)求橢圓的方程.
(2)①直線y=kx+2交橢圓于A、B兩點(diǎn),求k的取值范圍.②當(dāng)k=1時(shí),求
OA
OB
分析:(1)利用橢圓的標(biāo)準(zhǔn)方程和性質(zhì)即可得出;
(2)把直線方程代入橢圓方程,利用判別式△>0即可得到k的取值范圍,再利用根與系數(shù)的關(guān)系和數(shù)量積運(yùn)算即可得出數(shù)量積.
解答:解:(1)由c=
3
,a=2得b=
a2-c2
=1

方程為
x2
4
+y2=1

(2)①將y=kx+2代人得(4k2+1)x2+16kx+12=0
由△>0,得256k2-48(4k2+1)>0,解得k<-
3
2
k>
3
2

(3)由(2)可得,當(dāng)k=1時(shí),5x2+16x+12=0.
x1+x2=-
16
5
x1x2=
12
5

OA
OB
=x1x2+y1y2

=x1x2+(x1+2)(x2+2)
=2x1x2+2(x1+x2)+4
=
24
5
-
32
5
+4

=
12
5
點(diǎn)評(píng):熟練掌握橢圓的標(biāo)準(zhǔn)方程和性質(zhì)、直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立、判別式△>0及與系數(shù)的關(guān)系、數(shù)量積運(yùn)算等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè) A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
m
=(
x1
a
,
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
(2)設(shè)
OM
=cosθ•
OA
+sinθ•
OB
,證明點(diǎn)M在橢圓上;
(3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
PQ
OB
,試問(wèn):線段PQ能否被直線OA平分?若能平分,請(qǐng)加以證明;若不能平分,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案