【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)是否存在實(shí)數(shù),對任意的,且,恒成立?若存在,求出的取值范圍;若不存在,說明理由.
【答案】(1)當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.
(2)
【解析】
(1)先求導(dǎo)函數(shù)得,再討論的符合即可得函數(shù)的單調(diào)性;
(2)將不等式變形為,再構(gòu)造函數(shù),則原命題等價于在上單調(diào)遞減,再利用導(dǎo)數(shù)求解即可.
解:(1)因?yàn)?/span>,
所以.
當(dāng)時,恒成立,故在上單調(diào)遞增;
當(dāng)時,令,得;令,得.
所以在上單調(diào)遞減,在上單調(diào)遞增.
綜上,當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.
(2)因?yàn)閷θ我獾?/span>且,恒成立,
不妨設(shè),則,即,
設(shè),則在上單調(diào)遞減,即,
所以對于恒成立.
所以對于恒成立,
令,則,
即,解得.
所以,存在,對任意的且,恒成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知是曲線:上的動點(diǎn),將繞點(diǎn)順時針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)的兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若關(guān)于的方程有兩個不同實(shí)數(shù)根,求的取值范圍;
(2)若關(guān)于的不等式對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源分時租賃汽車”.其中一款新能源分時租賃汽車,每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程數(shù)按1元/公里計費(fèi);②行駛時間不超過分時,按元/分計費(fèi);超過分時,超出部分按元/分計費(fèi).已知王先生家離上班地點(diǎn)公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費(fèi)的時間 (分)是一個隨機(jī)變量.現(xiàn)統(tǒng)計了次路上開車花費(fèi)時間,在各時間段內(nèi)的頻數(shù)分布情況如下表所示:
時間(分) | ||||
頻數(shù) |
將各時間段發(fā)生的頻率視為概率,每次路上開車花費(fèi)的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費(fèi)用(元)與用車時間(分)的函數(shù)關(guān)系式;(2)若王先生一次開車時間不超過分為“路段暢通”,設(shè)表示3次租用新能源分時租賃汽車中“路段暢通”的次數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為a,∠D=60°,點(diǎn)H為DC邊中點(diǎn),現(xiàn)以線段AH為折痕將△DAH折起使得點(diǎn)D到達(dá)點(diǎn)P的位置且平面PHA⊥平面ABCH,點(diǎn)E,F分別為AB,AP的中點(diǎn).
(1)求證:平面PBC∥平面EFH;
(2)若三棱錐P﹣EFH的體積等于,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;
(2)若直線與軸和y軸分別交于A,B兩點(diǎn),P為曲線C上的動點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列,滿足.
(1)若,求數(shù)列前10項和;
(2)若,且數(shù)列前2017項中有100項是0,求的可能值;
(3)求證:在數(shù)列中,存在,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在處取得極值,其中,,為常數(shù).
(I)試確定,的值;
(II)討論函數(shù)的單調(diào)區(qū)間;
(III)若對任意,不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com