設(shè)偶函數(shù)f(x)滿(mǎn)足f(x)=2x-4(x≥0),則{x|f(x-2)>0}=
{x|x<0,或x>4}
{x|x<0,或x>4}
分析:由偶函數(shù)滿(mǎn)f(x)足f(x)=2x-4(x≥0),可得f(x)=f(|x|)=2|x|-4,根據(jù)偶函數(shù)的性質(zhì)將函數(shù)轉(zhuǎn)化為絕對(duì)值函數(shù),然后求解不等式可得答案.
解答:解:由偶函數(shù)滿(mǎn)f(x)足f(x)=2x-4(x≥0),故f(x)=f(|x|)=2|x|-4,
則f(x-2)=f(|x-2|)=2|x-2|-4,要使f(|x-2|)>0,
只需2|x-2|-4>0,|x-2|>2,解得x>4,或x<0.
故答案為:{x|x<0,或x>4}.
點(diǎn)評(píng):本題主要考查偶函數(shù)性質(zhì)、不等式的解法以及相應(yīng)的運(yùn)算能力,解答本題的關(guān)鍵是利用偶函數(shù)的性質(zhì)將函數(shù)轉(zhuǎn)化為絕對(duì)值函數(shù),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)偶函數(shù)f(x)滿(mǎn)足f(x)=2x-4(x≥0),則不等式f(x-2)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)偶函數(shù)f(x)滿(mǎn)足:x≥0時(shí)f(x)=2x-4,則不等式x•f(x-2)>0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)偶函數(shù)f(x)滿(mǎn)足f(x)=2x-4(x≥0),則不等式f(x)>0的解集為
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)設(shè)偶函數(shù)f(x)滿(mǎn)足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=x,則關(guān)于x的方程f(x)=(
1
8
)x
在區(qū)間[0,3]上解的個(gè)數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案