【題目】如圖1所示,在中,
,
,
,
為
的平分線,點(diǎn)
在線段
上,
.如圖2所示,將
沿
折起,使得平面
平面
,連結(jié)
,設(shè)點(diǎn)
是
的中點(diǎn).
圖1 圖2
(1)求證: 平面
;
(2)在圖2中,若平面
,其中
為直線
與平面
的交點(diǎn),求三棱錐
的體積.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)取的中點(diǎn)
,連接
,證明
,利用平面與平面垂直的性質(zhì)證明
平面
;(2)過(guò)點(diǎn)
作
交于點(diǎn)
,因?yàn)槠矫?/span>
平面
,
平面
,所以
平面
,求得
,利用棱錐的體積公式,即可求三棱錐
的體積.
試題解析:(1)在題圖1中,因?yàn)?/span>,
,
,所以
.
因?yàn)?/span>為
的平分線,所以
,
所以.
又因?yàn)?/span>,
,所以
則,所以
,即
在題圖2中,因?yàn)槠矫?/span>平面
,平面
平面
,
平面
,
所以平面
.
(2)在題圖2中,因?yàn)?/span>平面
,
平面
,平面
平面
,
所以
因?yàn)辄c(diǎn)在線段
上,
,點(diǎn)
是
的中點(diǎn),所以
過(guò)點(diǎn)作
交于點(diǎn)
因?yàn)槠矫?/span>平面
,
平面
,所以
平面
由條件得
又
,
所以三棱錐的體積為
.
【方法點(diǎn)晴】本題主要考查線面垂直的判定定理及面面垂直的性質(zhì)、棱錐的體積公式,屬于難題.解答空間幾何體中垂直關(guān)系時(shí),一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化時(shí)要正確運(yùn)用有關(guān)的定理,找出足夠的條件進(jìn)行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì)
;(4)利用面面垂直的性質(zhì),當(dāng)兩個(gè)平面垂直時(shí),在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、
為橢圓
:
(
)的左、右焦點(diǎn),點(diǎn)
為橢圓上一點(diǎn),且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓是以
為直徑的圓,直線
:
與圓
相切,并與橢圓
交于不同的兩點(diǎn)
、
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò)兩點(diǎn)
,
,且圓心
在直線
上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線過(guò)點(diǎn)
且與圓
有兩個(gè)不同的交點(diǎn)
,
,若直線
的斜率
大于0,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦
的垂直平分線過(guò)點(diǎn)
,若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)的直線與圓
相切,且與直線
垂直,則
( )
A. 2 B. 1 C. D.
【答案】A
【解析】因?yàn)辄c(diǎn)P(2,2)滿足圓的方程,所以P在圓上,
又過(guò)點(diǎn)P(2,2)的直線與圓相切,且與直線axy+1=0垂直,
所以切點(diǎn)與圓心連線與直線axy+1=0平行,
所以直線axy+1=0的斜率為: .
故選A.
點(diǎn)睛:對(duì)于直線和圓的位置關(guān)系的問題,可用“代數(shù)法”或“幾何法”求解,直線與圓的位置關(guān)系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方法的結(jié)合,“代數(shù)法”與“幾何法”是從不同的方面和思路來(lái)判斷的,解題時(shí)不要單純依靠代數(shù)計(jì)算,若選用幾何法可使得解題過(guò)程既簡(jiǎn)單又不容易出錯(cuò).
【題型】單選題
【結(jié)束】
23
【題目】設(shè)分別是雙曲線
的左、右焦點(diǎn).若點(diǎn)
在雙曲線上,且
,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩圓,
的圓心分別為c1,c2,,P為一個(gè)動(dòng)點(diǎn),且
.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)是否存在過(guò)點(diǎn)A(2,0)的直線l與軌跡M交于不同的兩點(diǎn)C,D,使得C1C=C1D?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校射擊隊(duì)的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該選手射擊一次,
(1)命中9環(huán)或10環(huán)的概率.
(2)至少命中8環(huán)的概率.
(3)命中不足8環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓
的圓心,
是圓上動(dòng)點(diǎn),點(diǎn)
在圓的半徑
上,且有點(diǎn)
和
上的點(diǎn)
,滿足
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(2)若斜率為的直線
與圓
相切,與(1)中所求點(diǎn)
的軌跡教育不同的兩點(diǎn)
是坐標(biāo)原點(diǎn),且
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來(lái)最嚴(yán)重的污染過(guò)程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與
的數(shù)據(jù)如表:
(1)由散點(diǎn)圖知與
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程;(提示數(shù)據(jù):
)
(2)利用(1)所求的回歸方程,預(yù)測(cè)該市車流量為12萬(wàn)輛時(shí)的濃度.
參考公式:回歸直線的方程是,其中
,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com