【題目】某超市采購了一批袋裝的進(jìn)口牛肉干進(jìn)行銷售,共1000袋,每袋成本為30元,銷售價格為50元,經(jīng)過科學(xué)測定,每袋牛肉干變質(zhì)的概率為,且各袋牛肉干是否變質(zhì)相互獨立.依據(jù)消費者權(quán)益保護(hù)法的規(guī)定:超市出售變質(zhì)食品的,消費者可以要求超市退一賠三.為了保護(hù)消費者權(quán)益,針對購買到變質(zhì)牛肉干的消費者,超市除退貨外,并對每袋牛肉干以銷售價格的三倍現(xiàn)金賠付,且把變質(zhì)牛肉干做廢物處理,不再進(jìn)行銷售.

(1)若銷售完這批牛肉干后得到的利潤為X,且,求p的取值范圍;

(2)已知,若超市聘請兼職員工來檢查這批牛肉干是否變質(zhì),超市需要支付兼職員工工資5000元,這樣檢查到的變質(zhì)牛肉干直接當(dāng)廢物處理,就不會流入到消費者手中.請以超市獲取的利潤為決策依據(jù),判斷超市是否需要聘請兼職員工來檢驗這批牛肉干是否變質(zhì)?

【答案】(1);(2)由,以超市獲取的利潤為決策依據(jù),故超市需要聘請兼職員工來檢驗這批牛肉干是否變質(zhì).

【解析】

1Y表示這1000袋牛肉干中變質(zhì)牛肉干的數(shù)量,首先計算出1000袋牛肉干變質(zhì)的期望值,再代入,再解出不等式即可。

2)對這批牛肉干來說,變質(zhì)牛肉干不管數(shù)量有多少,未變質(zhì)牛肉干銷售后產(chǎn)生的利潤與變質(zhì)牛肉干作廢物處后產(chǎn)生的費用是不變的.是否聘請兼職員工來檢查這批牛肉干是否變質(zhì),產(chǎn)生的費用是工資和給消費者賠付的費用.即只需判斷賠付費用與工資的大小關(guān)系即可說明是否需要聘請兼職員工。

(1)令Y表示這1000袋牛肉干中變質(zhì)牛肉干的數(shù)量.

由題意有,則

,有,解得:

故當(dāng)時,p的取值范圍為

(2)

當(dāng)時,由(1)知,

設(shè)需要賠付給消費者的費用為Z元,有

,以超市獲取的利潤為決策依據(jù),故超市需要聘請兼職員工來檢驗這批牛肉干是否變質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,,D是邊AC上一點,將沿BD折起,得到三棱錐.若該三棱錐的頂點A在底面BCD的射影M在線段BC上,設(shè),則x的取值范圍為()

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .

1)求直線和曲線的普通方程;

2)已知點,且直線和曲線交于兩點,求 的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若直線為曲線的切線,求證:直線與曲線不可能有2個切點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出了關(guān)于復(fù)數(shù)的四種類比推理:

①復(fù)數(shù)的加減法運算可以類比多項式的加減法運算法則;

②由向量的性質(zhì),類比得到復(fù)數(shù)的性質(zhì);

③方程有兩個不同實數(shù)根的條件是可以類比得到方程有兩個不同復(fù)數(shù)根的條件是

④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義,其中類比錯誤的是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)為邊長為1的正方形內(nèi)部及其邊界的點構(gòu)成的集合.從中的任意點Px軸、y軸的垂線,垂足分別為,.所有點構(gòu)成的集合為MM中所有點的橫坐標(biāo)的最大值與最小值之差記為;所有點構(gòu)成的集合為NN中所有點的縱坐標(biāo)的最大值與最小值之差記為.給出以下命題:

的最大值為:②的取值范圍是;③恒等于0

其中所有正確結(jié)論的序號是()

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人各自獨立地進(jìn)行射擊比賽,甲、乙兩人向射擊一次,擊中目標(biāo)的概率分別是,假設(shè)每次射擊是否擊中目標(biāo)相互之間沒有影響.

1)求甲射擊3次,至少有1次未擊中目標(biāo)的概率;

2)求兩人各射擊3次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國內(nèi)電商的不斷發(fā)展,快遞業(yè)也進(jìn)入了高速發(fā)展時期,按照國務(wù)院的發(fā)展戰(zhàn)略布局,以及國家郵政管理總局對快遞業(yè)的宏觀調(diào)控,SF快遞收取快遞費的標(biāo)準(zhǔn)是:重量不超過1kg的包裹收費10元;重量超過1kg的包裹,在收費10元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計算)需再收5.某縣SF分代辦點將最近承攬的100件包裹的重量統(tǒng)計如下:

重量(單位:kg

01]

1,2]

2,3]

34]

4,5]

件數(shù)

43

30

15

8

4

對近60天,每天攬件數(shù)量統(tǒng)計如下表:

件數(shù)范圍

0~100

101~200

201~300

301~400

401~500

件數(shù)

50

150

250

350

450

天數(shù)

6

6

30

1

6

以上數(shù)據(jù)已做近似處理,將頻率視為概率.

1)計算該代辦未來5天內(nèi)不少于2天攬件數(shù)在101~300之間的概率;

2)①估計該代辦點對每件包裹收取的快遞費的平均值;

②根據(jù)以往的經(jīng)驗,該代辦點將快遞費的三分之一作為前臺工作人員的工資和公司利潤,其余的用作其他費用.目前該代辦點前臺有工作人員3人,每人每天攬件不超過150件,日工資110.代辦點正在考慮是否將前臺工作人員裁減1人,試計算裁員前后代辦點每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,12月1日至12月5日的晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù)如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2組數(shù)據(jù)的概率.

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程.

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

同步練習(xí)冊答案