已知函數(shù),下列四個(gè)等式:

A.f(2π-x)=f(x);

B.f(2π+x)=f(x)

C.f(x)=f(x);

D.f(4π+x)=f(x)

其中成立的是________

答案:CD
解析:

解:,∴A不正確.

,∴B不正確.

,∴C正確.

,∴D正確.

∴成立的是CD.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題為真;
②命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③若a>0,b>0,A為a,b的等差中項(xiàng),正數(shù)G為a,b的等比中項(xiàng),則ab≥AG
④已知函數(shù)f(x)=log2x+logx2+1,x∈(0,1),則f(x)的最大值為-1.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給出下列四個(gè)命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π

②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且
OA
OB
OC
,則α+β=1是A、B、C三點(diǎn)共線(xiàn)的充要條件;
③若數(shù)列an恒滿(mǎn)足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱(chēng)數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年安徽省六安一中高三(下)第七次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列四個(gè)命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;
②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且,則α+β=1是A、B、C三點(diǎn)共線(xiàn)的充要條件;
③若數(shù)列an恒滿(mǎn)足(p為正常數(shù),n∈N*),則稱(chēng)數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為
(k∈N*).
其中正確命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題為真;
②命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③若a>0,b>0,A為a,b的等差中項(xiàng),正數(shù)G為a,b的等比中項(xiàng),則ab≥AG
④已知函數(shù)f(x)=log2x+logx2+1,x∈(0,1),則f(x)的最大值為-1.
其中正確結(jié)論的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年山東省青州市高三自主學(xué)習(xí)檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題為真;
②命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③若a>0,b>0,A為a,b的等差中項(xiàng),正數(shù)G為a,b的等比中項(xiàng),則ab≥AG
④已知函數(shù)f(x)=log2x+logx2+1,x∈(0,1),則f(x)的最大值為-1.
其中正確結(jié)論的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案