【題目】某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:

A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;

B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;

C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):表示種植前樹木的高度,取).

(1)若要求6年內(nèi)樹木的高度超過5米,你會選擇哪種樹木?為什么?

(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?

【答案】(1)選擇C;(2)第4或第5年.

【解析】

(1)根據(jù)已知求出三種樹木六年末的高度,判斷得解;(2)設(shè)為第年內(nèi)樹木生長的高度,先求出,設(shè),則,.再利用分析函數(shù)的單調(diào)性,分析函數(shù)的圖像得解.

(1)由題意可知,A、B、C三種樹木隨著時間的增加,高度也在增加,

6年末:A樹木的高度為(米):

B樹木的高度為(米):

C樹木的高度為(米),

所以選擇C樹木.

(2)設(shè)為第年內(nèi)樹木生長的高度,

,

所以,

設(shè),則

,因為在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),

所以當(dāng)時,取得最小值,從而取得最大值,此時,解得

因為,,故的可能值為3或4,

,,即

因此,種植后第4或第5年內(nèi)該樹木生長最快.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】土筍凍是閩南種廣受歡迎的特色傳統(tǒng)風(fēng)味小吃某小區(qū)超市銷售一款土筍凍,進價為每個15元,售價為每個20元.銷售的方案是當(dāng)天進貨,當(dāng)天銷售,未售出的全部由廠家以每個10元的價格回購處理.根據(jù)該小區(qū)以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)估算該小區(qū)土筍凍日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)已知該超市某天購進了150個土筍凍,假設(shè)當(dāng)天的需求量為銷售利潤為元.

(i)求關(guān)于的函數(shù)關(guān)系式;

(ii)結(jié)合上述頻率分布直方圖,以額率估計概率的思想,估計當(dāng)天利潤不小于650元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列{an}前n項和為Sn , a1=a2=2,且滿足Sn+Sn+1+Sn+2=3n2+6n+5,則S47等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+m|.
(Ⅰ) 解關(guān)于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當(dāng)x≠0時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足,對于給定的正整數(shù),若數(shù)列中首個值為1的項為,我們定義,則_____.設(shè)集合,則集合中所有元素的和為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018年高校自主招生期間,某校把學(xué)生的平時成績按“百分制”折算,選出前名學(xué)生,并對這名學(xué)生按成績分組,第一組,第二組,第三組,第四組,第五組.如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.

(1)請寫出第一、二、三、五組的人數(shù),并在圖中補全頻率分布直方圖;

(2)若大學(xué)決定在成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進行面試.

①若大學(xué)本次面試中有,,三位考官,規(guī)定獲得至少兩位考官的認(rèn)可即為面試成功,且各考官面試結(jié)果相互獨立.已知甲同學(xué)已經(jīng)被抽中,并且通過這三位考官面試的概率依次為,,,求甲同學(xué)面試成功的概率;

②若大學(xué)決定在這6名學(xué)生中隨機抽取3名學(xué)生接受考官的面試,第3組有名學(xué)生被考官面試,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市地鐵全線共有四個車站,甲、乙兩人同時在地鐵第1號車站(首發(fā)站)乘車,假設(shè)每人自第2號站開始,在每個車站下車是等可能的,約定用有序?qū)崝?shù)對表示甲在號車站下車,乙在號車站下車

)用有序?qū)崝?shù)對把甲、乙兩人下車的所有可能的結(jié)果列舉出來;

)求甲、乙兩人同在第3號車站下車的概率;

)求甲、乙兩人在不同的車站下車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為橢圓上一點,過點軸的垂線,垂足為.取點,連接,過點的垂線交軸于點.點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案