【題目】四面體ABCD及其三視圖如圖1,2所示.
(1)求四面體ABCD的體積;
(2)若點(diǎn)E為棱BC的中點(diǎn),求異面直線DE和AB所成角的余弦值.
【答案】
(1)解:根據(jù)直角三角形性質(zhì),得:BD⊥DC,AD⊥DC,
∴l(xiāng)1=AD=1, ,
∴四面體ABCD的體積
(2)解:取AC中點(diǎn)F,連DF,EF,則∠DEF為AB與DE所成角或補(bǔ)角.
,
∴ .
所以異面直線DE和AB所成角的余弦值 .
【解析】(1)根據(jù)直角三角形性質(zhì),得:BD⊥DC,AD⊥DC,由此能示出四面體ABCD的體積.(2)取AC中點(diǎn)F,連DF,EF,則∠DEF為AB與DE所成角或補(bǔ)角.由此能示出異面直線DE和AB所成角的余弦值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ )的值域?yàn)镽;命題q:3x﹣9x<a對一切實(shí)數(shù)x恒成立,如果命題“p且q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點(diǎn),且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)x,y滿足x2+y2﹣2x+2 y+3=0,則x﹣ y的取值范圍是( )
A.[2,+∞)
B.(2,6)
C.[2,6]
D.[﹣4,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,E為BC上的動點(diǎn).
(1)當(dāng)E為BC的中點(diǎn)時(shí),求證:PE⊥DE;
(2)設(shè)PA=1,在線段BC上存在這樣的點(diǎn)E,使得二面角P﹣ED﹣A的平面角大小為 .試確定點(diǎn)E的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是檢測某種濃度的農(nóng)藥隨時(shí)間x(秒)滲入某種水果表皮深度y(微米)的一組結(jié)果.
時(shí)間x(秒) | 5 | 10 | 15 | 20 | 30 |
深度y(微米) | 6 | 10 | 10 | 13 | 16 |
(1)在規(guī)定的坐標(biāo)系中,畫出 x,y 的散點(diǎn)圖;
(2)求y與x之間的回歸方程,并預(yù)測40秒時(shí)的深度(回歸方程精確到小數(shù)點(diǎn)后兩位;預(yù)測結(jié)果精確到整數(shù)). 回歸方程: =bx+a,其中 = ,a= ﹣b .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)請寫出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|1<2x﹣1<5},B={y|y=( )x , x≥﹣2}.
(1)求(UA)∩B;
(2)若集合C={x|a﹣1<x﹣a<1},且CA,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com