【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的圓心到直線的距離;
(2)已知,若直線與圓交于兩點,為的中點,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由甲乙兩位同學(xué)組成一個小組參加年級組織的籃球投籃比賽,共進行兩輪投籃,每輪甲乙各自獨立投籃一次,并且相互不受影響,每次投中得2分,沒投中得0分.已知甲同學(xué)每次投中的概率為,乙同學(xué)每次投中的概率為
(1)求第一輪投籃時,甲乙兩位同學(xué)中至少有一人投中的概率;
(2)甲乙兩位同學(xué)在兩輪投籃中,記總得分為隨機變量ξ,求ξ的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角中,,,,、分別是、上一點,且滿足平分,,以為折痕將折起,使點到達點的位置,且平面平面.
(1)證明:;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,焦距為2,直線與橢圓交于,兩點.
(1)求橢圓的標(biāo)準方程;
(2)若直線過橢圓的右焦點,且,求直線方程;
(3)設(shè)為坐標(biāo)原點,直線,的斜率分別為,,若,求面積的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)若滿足:①對任意、,都有;②對任意,都有,則稱函數(shù)為“中心捺函數(shù)”,其中點稱為函數(shù)的中心.已知函數(shù)是以為中心的“中心捺函數(shù)”,若滿足不等式,當(dāng)時,的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,.已知函數(shù),函數(shù),則下列命題中真命題的個數(shù)是( )
①圖象關(guān)于對稱;
②是奇函數(shù);
③在上是增函數(shù);
④的值域是.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C經(jīng)過伸縮變換得到曲線E,直線(t為參數(shù))與曲線E交于A,B兩點.
(1)設(shè)曲線C上任一點為,求的最小值;
(2)求出曲線E的直角坐標(biāo)方程,并求出直線l被曲線E截得的弦AB長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門在上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統(tǒng)計其乘車等待時間(指乘客從進站口到乘上車的時間,單位:分鐘)將統(tǒng)計數(shù)據(jù)按,,,…,分組,制成頻率分布直方圖如圖所示:
(1)求a的值;
(2)記A表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”試估計A的概率;
(3)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,求的值,并直接寫出與的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com