【題目】在扶貧活動(dòng)中,為了盡快脫貧(無(wú)債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒(méi)有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷量?jī)r(jià)格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.

(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;

(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

【答案】見解析

【解析】

解:設(shè)該店月利潤(rùn)余額為L(zhǎng)元,

則由題設(shè)得L=Q(P-14)×100-3 600-2 000,①

由銷量圖易得Q=

代入①式得L=

(1)當(dāng)14≤P≤20時(shí),Lmax=450元,此時(shí)P=19.5元;

當(dāng)20<P≤26時(shí),Lmax元,此時(shí)P=元.

故當(dāng)P=19.5元時(shí),月利潤(rùn)余額最大,為450元.

(2)設(shè)可在n年后脫貧,依題意有12n×450-50 000-58 000≥0,解得n≥20.

即最早可望在20年后脫貧.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】地自來(lái)苯超標(biāo),當(dāng)?shù)刈詠?lái)水公司對(duì)水質(zhì)檢測(cè)后,決定在水中投放一種藥劑來(lái)凈化水質(zhì),已知每投放質(zhì)量為藥劑后,經(jīng)過(guò)該藥劑在水中釋放的濃度毫克/升)滿足,其中,當(dāng)藥劑在水中的濃度不低于5(毫/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升時(shí)稱為最佳凈化.

如果投放的藥劑質(zhì)量為,試問(wèn)自來(lái)水達(dá)到有效凈化一共可持續(xù)幾天?

如果投放的藥劑質(zhì)量,為了使在9天(從投放藥劑算起包括9天)之內(nèi)的自來(lái)水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象上有一點(diǎn)列,點(diǎn)軸上的射影是,且 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2)對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

1)若曲線過(guò)點(diǎn),求曲線在點(diǎn)處的切線方程;

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)有兩個(gè)不同的零點(diǎn),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名同學(xué)參加某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

)求頻率分布直方圖中的值;

)分別求出成績(jī)落在, 中的學(xué)生人數(shù);

)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人的成績(jī)都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是上、下底邊長(zhǎng)為2和6,高為的等腰梯形,將它沿對(duì)稱軸折疊,使二面角為直二面角.

(1)證明:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( )

A.多于4個(gè) B.4個(gè)

C.3個(gè) D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是邊長(zhǎng)為的菱形,,.

(1)證明:平面

(2)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)圖象過(guò)點(diǎn)且在該點(diǎn)處的切線與直線垂直

(1)求實(shí)數(shù),的值

(2)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?

查看答案和解析>>

同步練習(xí)冊(cè)答案