【題目】已知函數(shù), .
(1)求函數(shù)的極值;
(2)若不等式對恒成立,求的取值范圍.
【答案】(1)答案見解析;(2) .
【解析】試題分析:(1)對函數(shù)求導(dǎo)得到 ,討論和0和1 的大小關(guān)系,在不同情況下求得導(dǎo)函數(shù)的正負(fù)即得到原函數(shù)的單調(diào)性,根據(jù)極值的概念得到結(jié)果;(2)設(shè) ,構(gòu)造以上函數(shù),研究函數(shù)的單調(diào)性,求得函數(shù)的最值,使得最小值大于等于0即可.
解析:
(Ⅰ),
,
∵的定義域?yàn)?/span>.
①即時(shí), 在上遞減, 在上遞增,
, 無極大值.
②即時(shí), 在和上遞增,在上遞減,
, .
③即時(shí), 在上遞增, 沒有極值.
④即時(shí), 在和上遞增, 在上遞減,
∴, .
綜上可知: 時(shí), , 無極大值;
時(shí), , ;
時(shí), 沒有極值;
時(shí), , .
(Ⅱ)設(shè) ,
,
設(shè),則, , ,
∴在上遞增,∴的值域?yàn)?/span>,
①當(dāng)時(shí), , 為上的增函數(shù),
∴,適合條件.
②當(dāng)時(shí),∵,∴不適合條件.
③當(dāng)時(shí),對于, ,
令, ,
存在,使得時(shí), ,
∴在上單調(diào)遞減,
∴,
即在時(shí), ,∴不適合條件.
綜上, 的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)為何值時(shí),軸為曲線的切線;
(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長度單位,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于、兩點(diǎn),且點(diǎn)的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當(dāng)為何值時(shí),銷售額最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機(jī)在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計(jì)結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀(jì)念品.
(Ⅰ)試確定, 的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀(jì)念品的數(shù)量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大型水上樂園內(nèi)有一塊矩形場地米, 米,以為直徑的半圓和半圓(半圓在矩形內(nèi)部)為兩個(gè)半圓形水上主題樂園, 都建有圍墻,游客只能從線段處進(jìn)出該主題樂園.為了進(jìn)一步提高經(jīng)濟(jì)效益,水上樂園管理部門決定沿著修建不銹鋼護(hù)欄,沿著線段修建該主題樂園大門并設(shè)置檢票口,其中分別為上的動(dòng)點(diǎn), ,且線段與線段在圓心和連線的同側(cè).已知弧線部分的修建費(fèi)用為元/米,直線部門的平均修建費(fèi)用為元/米.
(1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?
(2)試確定點(diǎn)的位置,使得修建費(fèi)用最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家電公司根據(jù)銷售區(qū)域?qū)N售員分成兩組.2017年年初,公司根據(jù)銷售員的銷售業(yè)績分發(fā)年終獎(jiǎng),銷售員的銷售額(單位:十萬元)在區(qū)間內(nèi)對應(yīng)的年終獎(jiǎng)分別為2萬元,2.5萬元,3萬元,3.5萬元.已知200名銷售員的年銷售額都在區(qū)間內(nèi),將這些數(shù)據(jù)分成4組: ,得到如下兩個(gè)頻率分布直方圖:
以上面數(shù)據(jù)的頻率作為概率,分別從組與組的銷售員中隨機(jī)選取1位,記分別表示 組與組被選取的銷售員獲得的年終獎(jiǎng).
(1)求的分布列及數(shù)學(xué)期;
(2)試問組與組哪個(gè)組銷售員獲得的年終獎(jiǎng)的平均值更高?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過站的地鐵票價(jià)如下表:
乘坐站數(shù) | |||
票價(jià)(元) |
現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站,且他們各自在每個(gè)站下車的可能性是相同的.
(1)若甲、乙兩人共付費(fèi)元,則甲、乙下車方案共有多少種?
(2)若甲、乙兩人共付費(fèi)元,求甲比乙先到達(dá)目的地的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com