【題目】已知拋物線的準(zhǔn)線為,為上一動點,過點作拋物線的切線,切點分別為.
(I)求證:是直角三角形;
(II)軸上是否存在一定點,使三點共線.
【答案】(I)證明見解析;(II)存在.
【解析】
(I)設(shè)出點M的坐標(biāo)以及切線方程,并將其與聯(lián)立消得,利用,得到,結(jié)合韋達(dá)定理得到,即可證明是直角三角形;
(II)設(shè),由(I)可得,設(shè)出直線AB的方程與聯(lián)立消得,結(jié)合韋達(dá)定理得到,解得,得到直線過定點,即可證明軸上存在一定點,使三點共線.
(I)由已知得直線的方程為,設(shè),切線斜率為,則切線方程為,將其與聯(lián)立消得.所以,化簡得,所以,所以.即是直角三角形.
(II)由I知時,方程的根為
設(shè)切點,則.因為,所以.
設(shè),與聯(lián)立消得,則,所以,解得,所以直線過定點.
即軸上存在一定點,使三點共線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將余弦函數(shù)的圖象向右平移個單位后,再保持圖象上點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼囊话,得到函?shù)的圖象,下列關(guān)于的敘述正確的是( )
A. 最大值為,且關(guān)于對稱
B. 周期為,關(guān)于直線對稱
C. 在上單調(diào)遞增,且為奇函數(shù)
D. 在上單調(diào)遞減,且為偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與直線交于P點.
(Ⅰ)當(dāng)直線過P點,且與直線平行時,求直線的方程.
(Ⅱ)當(dāng)直線過P點,且原點O到直線的距離為1時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)兩個焦點坐標(biāo)分別是,橢圓上一點到兩焦點的距離之和等于10;
(2)過點,且與橢圓有相同的焦點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明家的晚報在下午任何一個時間隨機地被送到,他們一家人在下午任何一個時間隨機地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進(jìn)行編號,編號為01,編號為02,依此類推,編號為90.在隨機數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)7840中的78不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為
7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.
(1)求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得函數(shù)的極小值為1,若存在,求出實數(shù)的值;若不存在,請說明理由;
(3)設(shè)函數(shù) 試證明:在上恒成立并證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時和2小時,漆工油漆一張、型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張、型型桌子分別獲利潤2千元和3千元.
(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出可行域;
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com